Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЗИ готовый.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
525.77 Кб
Скачать

16.Методы сложной замены

Шифр сложной замены, называемый шифром Грансфельда, представляет собой модификацию шифра Цезаря числовым ключом. Для этого под буквами исходного сообщения записывают цифры числового ключа. Если ключ короче сообщения, то его запись циклически повторяют. Шифртекст получают примерно, как в шифре Цезаря, но отсчитывают по алфавиту не третью букву (как это делается в шифре Цезаря), а выбирают ту букву, которая смещена па алфавиту на соответствующую цифру ключа. Например, применяя в качестве ключа группы из четырех начальных цифр числа е (основная натуральных логарифмов), а именно 2718, получаем для исходного сообщения ВОСТОЧНЫЙ ЭКСПРЕСС следующий шифртексты:

Сообщения В О С Т О Ч Н Ы Й Э К С П Р Е С С

Ключ 2 7 1 8 2 7 1 8 2 7 1 8 2 7 1 8 2

Шифртекст Д Х Т Ь Р Ю О Г Л Д Л Щ С Ч Ж Щ У

Чтобы зашифровать первую букву сообщения В, используя первую цифру ключа 2, нужно отсчитать вторую по порядку букву от В в алфавите В-Г-Д; получается первая буква шифртекста Д.

Следует отметить, что шифр Гронсфельда вскрывается относительно легко, если учесть, что в числовом ключе каждая цифра имеет только десять значений, а значит, имеется лишь десять вариантов прочтения каждой буквы шифртекста. С другой стороны, шифр Гронсфельда допускает дальнейшие модификации, улучшающие его стойкость, в частности двойное шифрование разными числовыми ключами. Шифр Гронсфельда представляет собой по существу частный случай системы шифрования Вижинера.

17.Шифры перестановки и подстановки

Пе­ре­ста­нов­ки - не­слож­ный ме­тод крип­то­гра­фи­че­ско­го пре­об­ра­зо­ва­ния. Используется, как правило, в со­че­та­нии с дру­ги­ми ме­то­да­ми.

Перестановкой  набора целых чисел (0,1,...,N-1) называется его переупорядочение. Для того чтобы показать, что целое i пере­мещено из позиции i в позицию (i), где 0  (i) < n, будем использовать запись

=((0), (1),..., (N-1)).

Число перестановок из (0,1,...,N-1) равно n!=1*2*...*(N-1)*N. Введем обозначение  для взаимно-однозначного отображения (гомо­морфизма) набора S={s0,s1, ...,sN-1}, состоящего из n элементов, на себя.

: S  S

: si s(i), 0  i < n

Будем говорить, что в этом смысле  является перестановкой элементов S. И, наоборот, автоморфизм S соответствует пере­становке целых чисел (0,1,2,.., n-1).

Криптографическим преобразованием T для алфавита Zm называется последовательность автоморфизмов: T={T(n):1n<}

T(n): Zm,nZm,n, 1n<

Каждое T(n) является, таким образом, перестановкой n-грамм из Zm,n.

Поскольку T(i) и T(j) могут быть определены независимо при ij, число криптографических преобразований исходного текста размерности n равно (mn)!1. Оно возрастает непропорционально при увеличении m и n: так, при m=33 и n=2 число различных криптографических преобразований равно 1089!. Отсюда следует, что потенциально существует большое число отображений исходного текста в шифрованный.

Практическая реализация криптогра­фических систем требует, чтобы преобразо­вания {Tk: kK} были определены алгоритмами, зависящими от относительно небольшого числа параметров (ключей).

Подстановка- самый простой вариант шифрования, прикотором происходит замена исходного текста на буквы шифрованного текста.

Например:

Исходный алфавит: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Алфавит замены: Z Y X W V U T S R Q P O N M L K J I H G F E D C B A