
- •1. Информация как объект юридической и физической защиты.
- •2. Основные цели и задачи обеспечения безопасности информации в ткс
- •4. Угрозы информационной безопасности.
- •5. Классификация информационной безопасности ткс.
- •6. Виды представления информации в ткс и возможные каналы ее утечки
- •7. Цели и возможные сценарии несанкционированного доступа в ткс.
- •8. Обеспечение защиты информации в ткс.
- •9. Способы и средства защиты абонентской линии
- •10. Построение парольных систем.
- •11. Способы хищения информации.
- •12. Информационные, программно – математические, физические, организационные угрозы.
- •13.Методы идентификации и аутентификации пользователей.
- •14.Криптографические методы защиты информации.
- •15.Классификация методов шифрования
- •16.Методы сложной замены
- •17.Шифры перестановки и подстановки
- •18.Шифрование методом гаммирования
- •19.Система шифрования Цезаря.
- •20.Система шифрования Вижнера, как шифр сложной замены
- •21.Шифр Вернамана.
- •22.Современные симметричные криптосистемы.
- •23. Американский стандарт шифрования данных des. Стандарт Data Encryption Stantart (des).
- •24. Основные режимы работ алгоритма des: ecb, cbc, cfb, ofb.
- •25. Алгоритм шифрования dea
- •30. Гост 28147-89. Гаммирование с обратной связью.
- •31. Гост 28147-89. Режим выработки и иммотопостановки.
- •32. Блочные и поточные шифры.
- •33. Ассиметричные криптосистемы. Концепция криптосистемы с открытым ключом. Разложение на простые множители
- •34. Процедура рукопожатия в аутентификации.
- •35.Однонаправленные функции
- •36.Криптосистема rsa. Процедура шифрования и расшифрования в rsa
- •37. Схема шифрования Диффи-Хелмана
- •38. Элементы теории чисел. Функция эйлера. Теория Ферма
- •39.Простой и обобщенный алгоритмы Эвклида
- •Алгоритм Евклида
- •Расширенный алгоритм Евклида и соотношение Безу
- •Связь с цепными дробями
- •Ускоренные версии алгоритма
- •40. Шифр Шамира
- •41.Шифр Эль-Гамаля
- •42.Идентификация и проверка подлинности. Применение пароля. Основные понятия.
- •43.Электронно-цифровая подпись
- •44. Однонаправленные хэш- функции
- •45. Алгоритм безопасного хеширования sha
- •46. Российский стандарт хеш-функции. Гост р34.11-94
- •47.Алгоритм цифровой подписи rsa
- •48.Электронная подпись на базе шифра эль-гамаля
- •50. Защита сетей от удаленных атак.
- •51. Симметричные шифры des, idea, blowfish.
- •52. Криптографические хэш-функции md5, md2, md4, sha.
- •61. Алгоритм открытого распеделения ключей Диффи – Хеллмана.
- •53. Распределение ключей с участием центра распределения.
- •54. Алгоритм открытого распределения ключей Диффи – Хеллмана.
- •55. Особенности функционирования межсетевых экранов. Определения.
- •56. Основные компоненты межсетевых экранов. Фильтрующие маршрутизаторы.
- •57. Шлюзы сетевого уровня.
- •58. Шлюзы прикладного уровня.
- •59. Виртуальная частная сеть как средство защиты информации.
- •60. Туннелирование в виртуальных частных сетях.
- •61. Протокол ipSec.
- •62. Транспортные и тунельные режимы. Пртокол ah в ipSec.
- •63. Протоколы esp в ipSec.
- •64. Базы защиты sad и spd.
- •65. Протокол защиты pgp
- •66. Защита информации в сети доступа.
- •67. Классификация vpn
- •68. Основные протоколы в vpn
- •69. Защита на канальном уровне протоколы: pptp, l2f, l2tp.
- •70. Компьютерные вирусы как специальный класс саморепродуктирующих программ. Средства антивирусной защиты.
- •71. Средства антивирусной защиты.
- •72. Методы и средства инжинерно – технической защиты информации в ткс.
- •73. Виды, источники и носители защищаемой информации. Опасные сигналы и их источники.
- •74. Побочные элекромагнитные излучения и наводки.
- •75. Экранирование и компенсация информационных полей
- •76. Подавление информационных сигналов в целях заземления и электропитания. Подавление опасных сигналов.
- •77.Безопасноть в беспроводных сетях
- •78. Алгоритмы шифрования в беспроводных сетях связи. Протокол wep
- •79. Защита информации в интернете
- •80. Защита информации в пэвм
65. Протокол защиты pgp
Программа основана на так называемой асимметричной криптографии, использующей взаимосвязные пары ключей: закрытый, хранящийся только у владельца для цели расшифрования данных и их цифрового подписания, и открытый, который не нуждается в защите, может быть широко распространен и используется для зашифрования и сличения цифровых подписей. С помощью PGP вы можете электронно подписать своё письмо, заверяя не только его авторство, но и конкретное содержание. Получив письмо, адресат сверит вашу электронную подпись (ЭЦП), чем установит, что а) отправителем являетесь именно вы и б) сообщение получено им ровно в том виде, в каком оно было подписано вами (т.е. не было по пути кем-то подделано или изменено). Таков принцип подлинности.
PGP имеет ряд преимуществ перед большинством программ и стандартов (таких, как X.509 и S/MIME) криптографической защиты информации. В сочетании же они обеспечивают ту надёжность и гибкость системы, за которую она стала так популярна и получила столь широкое распространение. Вот некоторые из достоинств криптосистемы PGP:
Используется по всему миру уже более десяти лет (первая версия была опубликована в 1991 г.).
Лежащий в её основе стандарт OpenPGP был принят организацией IETF в качестве интероперативного стандарта Интернета, и сегодня используется во множестве различных программ, обеспечивая их полную совместимость.
Поддерживает асимметричные ключи длиной до 4096 бит, перекрывающие стойкость 128-битовых симметричных шифров, не приводя к эффекту бутылочного горлышка.
Поддерживает блочные шифры с длиной ключа вплоть до 256 бит.
Пользователь может иметь множество ключей для различных задач и целей и самостоятельно заменять их в любое время по желанию или по необходимости..
Исходные тексты программы (для версий 1.x, 2.x, 5.x, 6.x, 8.0 и выше) опубликованы и доступны для свободного изучения.
Криптографическое ядро PGP SDK, реализованное в PGP 8.1 и выше и в ряде других продуктов, сертифицировано Национальным институтом стандартов и технологий США (NIST) на соответствие нормам безопасности FIPS PUB 140-2.
Программа бесплатна для частного некоммерческого использования.
Криптографические преобразования информации производятся только на компьютерах пользователей с помощью ключей, хранящихся только на компьютерах пользователей.
Поддерживает симметричное шифрование (шифрование только секретным паролем). Позволяет создавать т.н. саморасшифровывающиеся архивы (SDA), защищённые симметричным ключом, которые может распаковать пользователь, не имеющий установленной системы PGP.
Поддерживает электронные цифровые подписи (ЭЦП), позволяющие заверить авторство и целостность передаваемой информации.
66. Защита информации в сети доступа.
Среди всего многообразия способов несанкционированного перехвата информации особое место занимает анализ трафика в сети доступа, поскольку сеть доступа - самый первый и самый удобный источник связи между абонентами в реальном масштабе времени, и при этом самый незащищенный.
Сеть доступа имеет еще один недостаток с точки зрения безопасности - возможность перехвата речевой информации из помещений, по которым проходит телефонная линия, и где подключен телефонный аппарат (далее оконечное оборудование (ОО)), даже тогда, когда не ведутся телефонные переговоры. Для такого перехвата существует специальное оборудование, которое подключается к телефонной линии внутри контролируемого помещения или даже за его пределами. Требования к оборудованию противодействия данных угрозам описывают НД ТЗІ 2.3-002-2001, НД ТЗІ 2.3-003-2001, НД ТЗІ 4.7-001-2001 и некоторые другие нормативные документы.
В общем случае от ОО к АТС и обратно передаются:
сигналы управления и сигнализации стандартного оборудования (ТА, модем и т.д.);
сигналы передачи данных, речь;
сигналы сигнализации и управления нестандартного оборудования (охранная, пожарная сигнализация и др.).
Методы защиты информации в канале связи
Методы защиты информации в канале связи можно разделить на две группы:
основанные на ограничении физического доступа к линии и аппаратуре связи;
основанные на преобразовании сигналов в линии к форме, исключающей (затрудняющей) для злоумышленника восприятие или искажение содержания передачи.
Методы первой группы в основном находят применение в системах правительственной связи, где осуществляется контроль доступа к среде передачи данных.
Методы второй группы направлены на обратимое изменение формы представления передаваемой информации. Преобразование должно придавать информации вид, исключающий ее восприятие при использовании аппаратуры, стандартной для данного канала связи. При использовании же специальной аппаратуры восстановление исходного вида информации должно требовать затрат времени и средств, которые по оценке владельца защищаемой информации делают бессмысленным для злоумышленника вмешательство в информационный процесс.