
- •1. Информация как объект юридической и физической защиты.
- •2. Основные цели и задачи обеспечения безопасности информации в ткс
- •4. Угрозы информационной безопасности.
- •5. Классификация информационной безопасности ткс.
- •6. Виды представления информации в ткс и возможные каналы ее утечки
- •7. Цели и возможные сценарии несанкционированного доступа в ткс.
- •8. Обеспечение защиты информации в ткс.
- •9. Способы и средства защиты абонентской линии
- •10. Построение парольных систем.
- •11. Способы хищения информации.
- •12. Информационные, программно – математические, физические, организационные угрозы.
- •13.Методы идентификации и аутентификации пользователей.
- •14.Криптографические методы защиты информации.
- •15.Классификация методов шифрования
- •16.Методы сложной замены
- •17.Шифры перестановки и подстановки
- •18.Шифрование методом гаммирования
- •19.Система шифрования Цезаря.
- •20.Система шифрования Вижнера, как шифр сложной замены
- •21.Шифр Вернамана.
- •22.Современные симметричные криптосистемы.
- •23. Американский стандарт шифрования данных des. Стандарт Data Encryption Stantart (des).
- •24. Основные режимы работ алгоритма des: ecb, cbc, cfb, ofb.
- •25. Алгоритм шифрования dea
- •30. Гост 28147-89. Гаммирование с обратной связью.
- •31. Гост 28147-89. Режим выработки и иммотопостановки.
- •32. Блочные и поточные шифры.
- •33. Ассиметричные криптосистемы. Концепция криптосистемы с открытым ключом. Разложение на простые множители
- •34. Процедура рукопожатия в аутентификации.
- •35.Однонаправленные функции
- •36.Криптосистема rsa. Процедура шифрования и расшифрования в rsa
- •37. Схема шифрования Диффи-Хелмана
- •38. Элементы теории чисел. Функция эйлера. Теория Ферма
- •39.Простой и обобщенный алгоритмы Эвклида
- •Алгоритм Евклида
- •Расширенный алгоритм Евклида и соотношение Безу
- •Связь с цепными дробями
- •Ускоренные версии алгоритма
- •40. Шифр Шамира
- •41.Шифр Эль-Гамаля
- •42.Идентификация и проверка подлинности. Применение пароля. Основные понятия.
- •43.Электронно-цифровая подпись
- •44. Однонаправленные хэш- функции
- •45. Алгоритм безопасного хеширования sha
- •46. Российский стандарт хеш-функции. Гост р34.11-94
- •47.Алгоритм цифровой подписи rsa
- •48.Электронная подпись на базе шифра эль-гамаля
- •50. Защита сетей от удаленных атак.
- •51. Симметричные шифры des, idea, blowfish.
- •52. Криптографические хэш-функции md5, md2, md4, sha.
- •61. Алгоритм открытого распеделения ключей Диффи – Хеллмана.
- •53. Распределение ключей с участием центра распределения.
- •54. Алгоритм открытого распределения ключей Диффи – Хеллмана.
- •55. Особенности функционирования межсетевых экранов. Определения.
- •56. Основные компоненты межсетевых экранов. Фильтрующие маршрутизаторы.
- •57. Шлюзы сетевого уровня.
- •58. Шлюзы прикладного уровня.
- •59. Виртуальная частная сеть как средство защиты информации.
- •60. Туннелирование в виртуальных частных сетях.
- •61. Протокол ipSec.
- •62. Транспортные и тунельные режимы. Пртокол ah в ipSec.
- •63. Протоколы esp в ipSec.
- •64. Базы защиты sad и spd.
- •65. Протокол защиты pgp
- •66. Защита информации в сети доступа.
- •67. Классификация vpn
- •68. Основные протоколы в vpn
- •69. Защита на канальном уровне протоколы: pptp, l2f, l2tp.
- •70. Компьютерные вирусы как специальный класс саморепродуктирующих программ. Средства антивирусной защиты.
- •71. Средства антивирусной защиты.
- •72. Методы и средства инжинерно – технической защиты информации в ткс.
- •73. Виды, источники и носители защищаемой информации. Опасные сигналы и их источники.
- •74. Побочные элекромагнитные излучения и наводки.
- •75. Экранирование и компенсация информационных полей
- •76. Подавление информационных сигналов в целях заземления и электропитания. Подавление опасных сигналов.
- •77.Безопасноть в беспроводных сетях
- •78. Алгоритмы шифрования в беспроводных сетях связи. Протокол wep
- •79. Защита информации в интернете
- •80. Защита информации в пэвм
61. Алгоритм открытого распеделения ключей Диффи – Хеллмана.
Диффи и Хелман предложили для создания криптографических систем с открытым ключом функцию дискретного возведения в степень.
Необратимость преобразования в этом случае обеспечивается тем, что достаточно легко вычислить показательную функцию в конечном поле Галуа состоящим из p элементов. (p - либо простое число, либо простое в любой степени). Вычисление же логарифмов в таких полях - значительно более трудоемкая операция.
Если y=aax,, 1<x<p-1, где - фиксированный элемент поля GF(p), то x=logaa y над GF(p). Имея x, легко вычислить y. Для этого потребуется 2 ln(x+y) операций умножения.
Обратная задача вычисления x из y будет достаточно сложной. Если p выбрано достаточно правильно, то извлечение логарифма потребует вычислений, пропорциональных
L(p) = exp { (ln p ln ln p)0.5 }
Для обмена информацией первый пользователь выбирает случайное число x1, равновероятное из целых 1...p-1. Это число он держит в секрете, а другому пользователю посылает число
y1 = aax mod p
Аналгично поступает и второй пользователь, генерируя x2 и вычислив y2, отправляя его первому пользователю. В результате этого они могут вычислять k12 = aax1x2 mod p.
Для того, чтобы вычислить k12, первый пользователь возводит y2 в степень x1. То же делает и второй пользователь. Таким образом, у обоих пользователей оказывается общий ключ k12, который можно использовать для шифрования информации обычными алгоритмами. В отличие от алгоритма RSA, данный алгоритм не позволяет шифровать собственно информацию.
Не зная x1 и x2, злоумышленник может попытаться вычислить k12, зная только перехваченные y1 и y2. Эквивалентность этой проблемы проблеме вычисления дискретного логарифма есть главный и открытый вопрос в системах с открытым ключом. Простого решения до настоящего времени не найдено. Так, если для прямого преобразования 1000-битных простых чисел требуется 2000 операций, то для обратного преобразования (вычисления логарифма в поле Галуа) - потребуется около 1030 операций.
Как видно, при всей простоте алгоритма Диффи-Хелмана, вторым его недостатком по сравнению с системой RSA является отсутствие гарантированной нижней оценки трудоемкости раскрытия ключа.
Кроме того, хотя описанный алгоритм позволяет обойти проблему скрытой передачи ключа, необходимость аутентификации остается. Без дополнительных средств, один из пользователей не может быть уверен, что он обменялся ключами именно с тем пользователем, который ему нужен. Опасность имитации в этом случае остается.
В качестве обобщения сказанного о распределении ключей следует сказать следующее. Задача управления ключами сводится к поиску такого протокола распределения ключей, который обеспечивал бы:
возможность отказа от центра распределения ключей;
взаимное подтверждение подлинности участников сеанса;
подтверждение достоверности сеанса механизмом запроса-ответа, использование для этого программных или аппаратных средств;
использование при обмене ключами минимального числа сообщений.