
- •1. Информация как объект юридической и физической защиты.
- •2. Основные цели и задачи обеспечения безопасности информации в ткс
- •4. Угрозы информационной безопасности.
- •5. Классификация информационной безопасности ткс.
- •6. Виды представления информации в ткс и возможные каналы ее утечки
- •7. Цели и возможные сценарии несанкционированного доступа в ткс.
- •8. Обеспечение защиты информации в ткс.
- •9. Способы и средства защиты абонентской линии
- •10. Построение парольных систем.
- •11. Способы хищения информации.
- •12. Информационные, программно – математические, физические, организационные угрозы.
- •13.Методы идентификации и аутентификации пользователей.
- •14.Криптографические методы защиты информации.
- •15.Классификация методов шифрования
- •16.Методы сложной замены
- •17.Шифры перестановки и подстановки
- •18.Шифрование методом гаммирования
- •19.Система шифрования Цезаря.
- •20.Система шифрования Вижнера, как шифр сложной замены
- •21.Шифр Вернамана.
- •22.Современные симметричные криптосистемы.
- •23. Американский стандарт шифрования данных des. Стандарт Data Encryption Stantart (des).
- •24. Основные режимы работ алгоритма des: ecb, cbc, cfb, ofb.
- •25. Алгоритм шифрования dea
- •30. Гост 28147-89. Гаммирование с обратной связью.
- •31. Гост 28147-89. Режим выработки и иммотопостановки.
- •32. Блочные и поточные шифры.
- •33. Ассиметричные криптосистемы. Концепция криптосистемы с открытым ключом. Разложение на простые множители
- •34. Процедура рукопожатия в аутентификации.
- •35.Однонаправленные функции
- •36.Криптосистема rsa. Процедура шифрования и расшифрования в rsa
- •37. Схема шифрования Диффи-Хелмана
- •38. Элементы теории чисел. Функция эйлера. Теория Ферма
- •39.Простой и обобщенный алгоритмы Эвклида
- •Алгоритм Евклида
- •Расширенный алгоритм Евклида и соотношение Безу
- •Связь с цепными дробями
- •Ускоренные версии алгоритма
- •40. Шифр Шамира
- •41.Шифр Эль-Гамаля
- •42.Идентификация и проверка подлинности. Применение пароля. Основные понятия.
- •43.Электронно-цифровая подпись
- •44. Однонаправленные хэш- функции
- •45. Алгоритм безопасного хеширования sha
- •46. Российский стандарт хеш-функции. Гост р34.11-94
- •47.Алгоритм цифровой подписи rsa
- •48.Электронная подпись на базе шифра эль-гамаля
- •50. Защита сетей от удаленных атак.
- •51. Симметричные шифры des, idea, blowfish.
- •52. Криптографические хэш-функции md5, md2, md4, sha.
- •61. Алгоритм открытого распеделения ключей Диффи – Хеллмана.
- •53. Распределение ключей с участием центра распределения.
- •54. Алгоритм открытого распределения ключей Диффи – Хеллмана.
- •55. Особенности функционирования межсетевых экранов. Определения.
- •56. Основные компоненты межсетевых экранов. Фильтрующие маршрутизаторы.
- •57. Шлюзы сетевого уровня.
- •58. Шлюзы прикладного уровня.
- •59. Виртуальная частная сеть как средство защиты информации.
- •60. Туннелирование в виртуальных частных сетях.
- •61. Протокол ipSec.
- •62. Транспортные и тунельные режимы. Пртокол ah в ipSec.
- •63. Протоколы esp в ipSec.
- •64. Базы защиты sad и spd.
- •65. Протокол защиты pgp
- •66. Защита информации в сети доступа.
- •67. Классификация vpn
- •68. Основные протоколы в vpn
- •69. Защита на канальном уровне протоколы: pptp, l2f, l2tp.
- •70. Компьютерные вирусы как специальный класс саморепродуктирующих программ. Средства антивирусной защиты.
- •71. Средства антивирусной защиты.
- •72. Методы и средства инжинерно – технической защиты информации в ткс.
- •73. Виды, источники и носители защищаемой информации. Опасные сигналы и их источники.
- •74. Побочные элекромагнитные излучения и наводки.
- •75. Экранирование и компенсация информационных полей
- •76. Подавление информационных сигналов в целях заземления и электропитания. Подавление опасных сигналов.
- •77.Безопасноть в беспроводных сетях
- •78. Алгоритмы шифрования в беспроводных сетях связи. Протокол wep
- •79. Защита информации в интернете
- •80. Защита информации в пэвм
45. Алгоритм безопасного хеширования sha
Алгоритм безопасного хэширования SНА (Secure Hash Algorithm) разработан НИСТ и АНБ США в рамках стандарта безопасного хэширования SHS (Secure Hash Standard) в 1992 г. Алгоритм хэширования SНА предназначен для использования совместно с алгоритмом цифровой подписи DSА.
При вводе сообщения М произвольной длины менее 264 бит алгоритм SНА вырабатывает 160-битовое выходное сообщение, называемое дайджестом сообщения МD (Message Digest). Затем этот дайджест сообщения используется в качестве входа алгоритма DSА, который вычисляет цифровую подпись сообщения М. Формирование цифровой подписи для дайджеста сообщения, а не для самого сообщения повышает эффективность процесса подписания, поскольку дайджест сообщения обычно намного короче самого сообщения.
Такой же дайджест сообщения должен вычисляться пользователем, проверяющим полученную подпись, при этом в качестве входа в алгоритм SНА используется полученное сообщение М.
Алгоритм хэширования SНА назван безопасным, потому что он спроектирован таким образом, чтобы было вычислительно невозможно восстановить сообщение, соответствующее данному дайджесту, а также найти два различных сообщения, которые дадут одинаковый дайджест. Любое изменение сообщения при передаче с очень большой вероятностью вызовет изменение дайджеста, и принятая цифровая подпись не пройдет проверку.
Рассмотрим подробнее работу алгоритма хэширования SНА. Прежде всего исходное сообщение М дополняют так, чтобы оно стало кратным 512 битам. Дополнительная набивка сообщения выполняется следующим образом: сначала добавляется единица, затем следуют столько нулей, сколько необходимо для получения сообщения, которое на 64 бита короче, чем кратное 512, и наконец добавляют 64-битовое представление длины исходного сообщения.
Инициализируется пять 32-битовых переменных в виде:
А = 0 х 6 7 4 5 2 3 0 1
В = 0 х Е F С D А В 8 9
С = 0 х 9 8 В А D С F Е
D = 0 x 1 0 3 2 5 4 7 6
Е = 0 х С 3 D 2 Е 1 F 0
Затем начинается главный цикл алгоритма. В нем обрабатывается по 512 бит сообіцения поочередно для всех 512-битовых блоков, имеющихся в сообщении. Первые пять переменных А, В, С, D, Е копируются в другие переменные a, b, с, d, е:
а=А, b=В, с=С, d=D, е=Е.
Главный цикл содержит четыре цикла по 20 операций каждый. Каждая операция реализует нелинейную функцию от трех из пяти переменных а, b, с, d, е, а затем производит сдвиг и сложение.
Алгоритм SНА имеет следующий набор нелинейных функций:
ft (Х, Y, Z) = (X Ù Y) Ú ((ØX) Ù Z) для t = 0...19,
ft (Х, Y, Z) =Х Å Y Å Z для t =20...39,
ft (Х, Y, Z) = (X Ù Y) Ú (X Ù Z) Ú (Y Ù Z) для t = 40...59,
ft (Х, Y, Z) = Х Å Y Å Z для t = 60...79,
где t - номер операции.
В алгоритме используются также четыре константы:
Кt = 0х5А827999 для t = 0...19,
Кt = 0х6ЕD9ЕВА1 для t = 20...39,
Кt = 0х8F1ВВСDС для t = 40...59,
Кt = 0хСА62С1D6 для t = 60...79.
Блок сообщения преобразуется из шестнадцати 32-битовых слов (М0...М15) в восемьдесят 32-битовых слов (W0...W79) с помощью следующего алгоритма:
Wt = Мt для t = 0...15,
Wt = (Wt-3 Å Wt-8 Å Wt-14 Å Wt-16) <<< 1 для t = 16...79,
где t - номер операции (для t = 1...80),
Wt - t-й субблок расширенного сообщения,
<<< S - циклический сдвиг влево на S бит.
С учетом введенных обозначений главный цикл из восьмидесяти операций можно описать так:
FOR t = 0 до 79
ТЕМР = (а <<< 5) + ft (b, c, d) + е + Wt + Кt
е = d
d = с
с = (b <<< 30)
b = а
а = ТЕМР
После окончания главного цикла значения а, b, с, d и е складываются с А, В, С, D и Е соответственно, и алгоритм приступает к обработке следующего 512-битового блока данных. Окончательный выход формируется в виде конкатенации значений А, В, С, D и Е.
Рис.2.
Схема выполнения одной операции алгоритма
SHA
Поскольку алгоритм SНА выдает 160-битовое хэш-значение, он более устойчив к атакам полного перебора и атакам "дня рождения", чем большинство других алгоритмов хэширования, формирующих 128-битовые хэш-значения.