
- •Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Санкт-Петербургский государственный университет аэрокосмического приборостроения»
- •М29 а.А. Мартынов. Электрический привод.: Учеб. Пособие/ а.А.Мартынов. СПб.: сПбГуап, 2013. 426 с.: ил.
- •1. Основные определения и параметры электропривода
- •1.1. Краткая классификация электроприводов
- •1.2. Основные технические параметры эп
- •1.3. Основные требования, предъявляемые к автоматизированным эп малой и средней мощности, предназначенных для мехатронных и робототехнических систем
- •Требования к системам защиты. Эп должны быть снабжены аппаратурой защиты, сигнализации и индикации рабочих и аварийных режимов. Эп должны иметь следующие виды защит от:
- •2. Основные уравнения и характеристики электропривода
- •2.1. Уравнения динамики электропривода как электромеханической системы
- •2.2. Полные уравнения движения электропривода [1]
- •2.3. Расчетные схемы механической части электропривода. Одномассовая расчетная схема
- •2.4. Многомассовые расчетные схемы
- •2.5. Установившееся движение электропривода и его устойчивость [1]
- •2.6. Неустановившееся движение электропривода при постоянном динамическом моменте
- •2.7. Неустановившееся движение при линейных механических характеристиках двигателя и исполнительного органа [1]
- •Регулирование координат электропривода [1]
- •3.1. Регулирование скорости
- •3.2. Регулирование момента и тока
- •3.3. Регулирование положения
- •4. Электроприводы с двигателями постоянного тока
- •4.1. Схема включения и статические характеристики двигателя постоянного тока независимого возбуждения
- •4.2. Режимы торможения, холостого хода и короткого замыкания двигателя постоянного тока независимого возбуждения [1]
- •4.3. Регулирование скорости двигателя постоянного тока независимого возбуждения с помощью резисторов в цепи якоря [1]
- •4.4. Расчет регулировочных резисторов в цепи обмотки якоря
- •4.5. Регулирование тока и момента при пуске, торможении и реверсе [1]
- •4.6. Регулирование скорости двигателя постоянного тока независимого возбуждения изменением магнитного потока
- •4.7. Регулирование скорости двигателя постоянного тока независимого возбуждения изменением напряжения якоря
- •4.8. Схема включения, статические характеристики двигателя постоянного тока последовательного возбуждения [1]
- •4.9. Регулирование координат электропривода с двигателем постоянного тока последовательного возбуждения с помощью резисторов [1]
- •Переходные процессы пуска двигателя постоянного тока независимого возбуждения и передаточные функции
- •5.1. Аналитический метод исследования переходных процессов электропривода на базе математической модели двигателя постоянного тока
- •5.2. Передаточные функции двигателя постоянного тока с независимым возбуждением
- •5.3. Регулировочная характеристика управляемого выпрямителя при различных формах кривой опорного напряжения [11]
- •5.4. Передаточная функция управляемого выпрямителя (без учета слаживающего фильтра в цепи постоянного тока) [11]
- •Электроприводы с асинхронным двигателем
- •6.1. Схема замещения, статические характеристики и режимы работы асинхронного двигателя
- •6.2. Регулирование скорости вращения асинхронного двигателя с помощью резисторов [1]
- •Регулирование координат электропривода с асинхронным двигателем изменением напряжения обмотки статора
- •6.4. Передаточная функция асинхронного двигателя при управлении по каналу напряжения обмотки статора
- •6.5. Замкнутая по скорости система асинхронного электропривода с трн
- •6.6. Регулирование скорости вращения асинхронного двигателя изменением частоты питающего напряжения
- •6.7. Передаточная функция асинхронного двигателя при управлении по каналу частоты
- •6.8. Регулирование скорости асинхронного двигателя изменением числа пар полюсов [1]
- •6.9. Регулирование скорости асинхронного двигателя в каскадных схемах его включения
- •6.10. Импульсный способ регулирования скорости асинхронного эп [1]
- •6.11. Способы торможения асинхронного двигателя
- •6.12. Электропривод с линейным асинхронным двигателем [1]
- •7. Преобразователи частоты для асинхронного электропривода [12]
- •7.1. Преобразователи частоты со звеном постоянного тока
- •7.2.Преобразователи частоты без звена постоянного тока
- •7.4. Влияние параметров ад и пч на устойчивость работы асинхронного эп
- •Выбор и проверка двигателей на нагрев
- •8.1.Расчет мощности и выбор двигателей
- •8.2. Проверка двигателей по нагреву прямым методом
- •8.3. Проверка двигателей по нагреву косвенным методом
- •9.Релейно-контакторные системы электроприводов
- •9.1. Типовые узлы и схемы управления электроприводов с двигателями постоянного тока
- •9.2. Типовые узлы и схемы управления электроприводов с асинхронными двигателями
- •9.3. Выбор аппаратов коммутации, управления и защиты
- •9.4. Электромагнитные муфты и тормозные устройств
- •10. Электропривод с синхронным двигателем
- •10.1. Схемы включения, статические характеристики и режимы работы синхронного двигателя
- •10.2. Пусковые и установившиеся режимы работы синхронного двигателя
- •11. Электроприводы с вентильным, вентильно-индукторным и шаговым двигателями
- •11.1. Электропривод с вентильным двигателем [9]
- •3. Дпр с фотоэлектронными элементами.
- •11.2. Электропривод с вентильно-индукторным двигателем
- •Достоинства и недостатки вид
- •11.3. Электропривод с шаговым двигателем [9]
- •12. Замкнутые схемы управления электроприводов
- •12.1. Системы подчиненного регулирования
- •12.2. Технические средства замкнутых схем управления электропривода
- •12.3.Микропроцессорные средства управления электропривода
- •Установившиеся режимы стабилизации скорости вращения электропривода постоянного тока
- •13.1. Эп постоянного тока с отрицательной обратной связью по напряжению
- •13.2.Эп с отрицательной обратной связью по скорости двигателя
- •13.3. Эп с положительной обратной связью (пос) по току якоря двигателя
- •13.5.Эп с отрицательной обратной связью по скорости и положительной обратной связью по току якоря
- •13.6. Двухконтурная система подчиненного регулирования с пропорциональным регулятором скорости
- •13.7. Ограничение уровня сигналов управления
- •13.8.Упреждающее токоограничение
- •14. Следящий электропривод
- •14.1. Измерители рассогласования положения
- •14.2.Типы следящих электроприводов
- •14.3.Техническое задание и основные этапы проектирования следящего эп
- •15. Электроприводы с программным и адаптивным управлением
- •15.1. Электроприводы с нечисловыми (цикловыми) программными устройствами
- •15.2. Электропривод с числовым программным управлением (чпу)
- •15.3.Ограничение ускорения при программном управлении эп
- •15.4.Электропривод с адаптивным управлением
- •16. Надежность электрического привода
- •16.1.Основные определения теории надежности
- •16.2. Количественные характеристики надежности
- •16.3.Надежность систем из последовательно и параллельно соединенных элементов
- •16.4.Порядок расчета надежности коэффициентным методом
- •17. Справочные данные по электрическим двигателям постоянного тока
Выбор и проверка двигателей на нагрев
Основным требованием при выборе электродвигателя является его соответствие условиям технологического процесса рабочей машины. Задача выбора состоит в поиске такого двигателя, который будет обеспечивать заданный технологический цикл рабочей машины, иметь конструкцию, соответствующую условиям эксплуатации и компоновки с рабочей машиной, а его нагрев при этом не должен превышать нормативный (допустимый) уровень.
Выбор двигателя недостаточной мощности может привести к нарушению заданного технологического цикла и снижению производительности рабочей машины. Происходящие при этом его повышенный нагрев и ускоренное старение изоляции определяют преждевременный выход самого двигателя из строя, останов рабочей машины и соответствующие экономические потери.
Недопустимым является также использование двигателей завышенной мощности, так как при этом, имея повышенную первоначальную стоимость, ЭП работает с низкими КПД и коэффициентом мощности. Таким образом, обоснованный выбор электродвигателя во многом определяет технико-экономические показатели работы комплекса «ЭП - рабочая машина».
8.1.Расчет мощности и выбор двигателей
Выбор электродвигателя производится обычно следующим образом [1]: сначала рассчитывается требуемая мощность, а затем предварительно выбранный двигатель проверяется по условиям пуска, перегрузке и нагреву. Если он удовлетворяет условиям проверки, то на этом выбор заканчивается, если же не удовлетворяет, то выбирается другой двигатель (как правило, большей мощности) и проверка повторяется.
При проектировании вновь создаваемого ЭП одновременно с выбором двигателя должны производиться расчет передаточного числа (радиуса приведения) и выбор механической передачи между двигателем и исполнительным органом рабочей машины. В данной главе рассматривается более простая задача - выбор двигателя при известных механической передаче, ее передаточном числе (или радиусе приведения) и КПД.
Основой для расчета мощности и выбора электродвигателя являются нагрузочная диаграмма и диаграмма скорости (тахограмма) исполнительного органа рабочей машины vио(t) или Ωио(t). После выполнения операции приведения эти зависимости изображаются в виде графика изменения скорости вала двигателя во времени Ω (t).
Нагрузочная диаграмма исполнительного органа рабочей машины представляет собой график изменения приведенного к валу двигателя статического момента нагрузки во времени Mc(t). Эта диаграмма рассчитывается на основании технологических данных, характеризующих работу машин и механизмов, и параметров механической передачи.
Для примера приведем формулы, по который можно рассчитать моменты сопротивления Мс, создаваемые на валу двигателя при работе исполнительных органов некоторых машин и механизмов.
При работе механизма подъемной лебедки
Mc=GR/(ίрη), (254)
где G - сила тяжести поднимаемого груза, Н; R - радиус барабана подъемной лебедки, м; ίр, η - соответственно передаточное число и КПД механической передачи.
При работе механизма передвижения подъемных кранов
Мс=k1G(μr+fт. к)/(ίрη), (255)
где G - сила тяжести перемещаемой массы, Н; k1 = 1,8... 2,5 - коэффициент, учитывающий увеличение сопротивления движению из-за трения реборд ходовых колес о рельсы; μ= 0,015... 0,15 - коэффициент трения в опорах ходовых колес; fт. к = (5-12)10-4 - коэффициент трения качения ходовых колес по рельсам, м; r - радиус шейки оси ходового колеса, м.
При работе вентиляторов
Mc=kзQH/(ηвΩвηίр), (256)
где Q - производительность вентилятора, м3/с; Н - напор (давление) газа, Па; ηв= 0,4... 0,85 - КПД вентилятора; Ωв - скорость вентилятора, рад/с; kз = 1,1... 1,5 - коэффициент запаса.
Рис.122. Нагрузочная диаграмма исполнительного органа (а), диаграмма скорости (б), график динамического момента (в) и зависимость момента двигателя от времени (г)
При работе насосов
Мс = kзgρQ(Hс + ΔН)/(ηнΩнηίр), (257)
где Q - производительность насоса, м3/с; Нс - статический напор, м; ΔН - потери напора в трубопроводе, м; g = 9,81 - ускорение свободного падения, м/с2; ρ - плотность перекачиваемой жидкости, кг/м3; kз = 1,1-1,3 - коэффициент запаса; ηн= 0,45-0,75 - КПД насоса; Ωн - скорость насоса, рад/с.
На рис. 122, а приведен пример нагрузочной диаграммы, которая показывает, что некоторый исполнительный орган создает при своей работе в течение времени t1 момент нагрузки Мс1, а в течение времени t2 - момент нагрузки Мс2. Из тахограммы (см. рис. 122, б) видно, что его движение состоит из участков разгона, движения с установившейся скоростью, торможения и паузы. Продолжительности этих участков соответственно равны tp, tу, tт, t0, а полное время цикла Тц = tp + tу+tт+t0= tl + t2.
Порядок расчета мощности, предварительного выбора и проверки двигателя рассмотрим на примере этих диаграмм.
Определение расчетной мощности двигателя.
Ориентировочно расчетный момент двигателя
Мрасч≥kзМс. э, (258)
где Мс. э - эквивалентный момент нагрузки; kз - коэффициент запаса, учитывающий динамические режимы электродвигателя, когда он работает с повышенными токами и моментами.
Если момент нагрузки Мс изменяется во времени и нагрузочная диаграмма имеет несколько участков, как это показано на рис. 122, а, то Мс. э определяется как среднеквадратичная величина:
(259)
где Мci, ti, - соответственно момент и длительность i-го участка нагрузочной диаграммы.
Для рассматриваемого графика движения расчетная скорость двигателя Ωрасч = Ωуст. Если скорость исполнительного органа регулируется, то расчетная скорость двигателя определяется более сложным путем и зависит от ее способа регулирования [12].
Расчетная мощность двигателя
Pрасч = М расчΩрасч = kзМс.эΩуст. (260)
Выбор двигателя и проверка его по перегрузке и условиям пуска. По каталогу выбираем двигатель с ближайшими большими значениями мощности и скорости. Выбранный двигатель при этом должен по роду и значению напряжения соответствовать параметрам сетей переменного или постоянного тока или силовых преобразователей, к которым он подключается; по конструктивному исполнению - условиям его компоновки с исполнительным органом и способам крепления на рабочей машине, а по способу вентиляции и защиты от действия окружающей среды - условиям его работы.
Выбранный двигатель проверяется по перегрузочной способности. Для этого рассчитывается зависимость его момента от времени M(t) т. е нагрузочная диаграмма двигателя. Она строится с помощью уравнения механического движения (25), записанного в виде
М = Мс + JdΩ/dt = Мс + Мдин. (261)
Динамический момент Мдин определяется суммарным приведенным моментом инерции J и заданными ускорением на участке разгона и замедлением на участке торможения диаграммы скорости Ω(t) (см. рис. 122, б). Если считать график Ω(t) на участках разбега и торможения линейным, то динамические моменты на этих участках можно записать в следующем виде:
Мдин. р = JΔΩ/Δt = JΩycт/tp = const;
Мдин. т = - JΩycт/tт. (262)
Зная график динамического момента (см. рис. 122, в) при постоянных ускорении и замедлении и зависимость M(t), построенную на основании (261), сопоставим максимально допустимый момент двигателя Мmах с максимальным моментом при разбеге М1 (см. рис. 122, г). Для рассматриваемого случая должно выполняться соотношение
Мmax ≥ М1 . (263)
Если соотношение (263) выполняется, то двигатель обеспечит заданное ускорение на участке разгона (см. рис. 122), если нет - график движения на этом участке будет отличаться от заданного и необходимо выбирать другой двигатель, если такой график скорости должен быть выполнен обязательно.
Для двигателя постоянного тока обычного исполнения и синхронного двигателя Мmах = Мдоп = (1,5-2,5)Мном, для АД с фазным ротором этот момент может быть принят примерно равным критическому.
При выборе АД с короткозамкнутым ротором двигатель должен быть проверен также по условиям пуска, для чего сопоставляется его пусковой момент Мп с моментом нагрузки при пуске Мс. п
Мп >Мс. п . (264)
Для рассматриваемого примера Мсп = Мс1. Если выбранный двигатель удовлетворяет рассмотренным условиям, то далее осуществляется его проверка по нагреву.
Задача 35. Работа ЭП характеризуется рис.122, а, б, при этом: Мс1 = 40 Нм; Мс2 = 15 Нм; t1 = 20 с; t2 = 60 с; tp = 2 с; tт = 1 с; ty = 11 с; Ωуст = 140 рад/с; J= 0,8 кгм2. Определить расчетный момент и мощность двигателя и построить его нагрузочную диаграмму.
Решение: Расчетный момент двигателя определим по (258) с учетом (259), а расчетную мощность - по (260):
Для построения нагрузочной диаграммы двигателя M(t) определим сначала динамические моменты на участках разбега Мдин. р и торможения Мдин. т:
Мдин. р = JΩуст/tр=0,8∙140/2 = 56 Нм; Мдин. т = - JΩуст/tт = -0,8∙140/1 = -112 Нм;
Моменты двигателя на участках разбега М1 и торможения М2 найдем по (98):
М1 =Мс1 + Мдин. р =40 + 56 = 96 Н м,
М2 = Мс2 + Мдин. т =20-112 = -92 Нм.
Моменты двигателя на участках установившегося движения (t1-tр) и (t2- tт) равны моментам нагрузки Мc1 и Mc2 поскольку динамический момент на них равен нулю.