Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Электрический привод .doc
Скачиваний:
2
Добавлен:
01.05.2025
Размер:
37.09 Mб
Скачать

4.8. Схема включения, статические характеристики двигателя постоянного тока последовательного возбуждения [1]

В ЭП электрического транспорта и ряда грузоподъемных машин и механизмов нашли широкое применение двигатели постоянного тока последовательного возбуждения (ДПТ ПВ), схема включения и кривая намагничивания которых показаны на рис. 54. Основ­ной особенностью этих двигателей является включение обмотки воз­буждения 2 последовательно с обмоткой якоря 1 и добавочным ре­зистором 3, вследствие чего ток якоря одновременно является и током возбуждения.

Рис.54. Схема включения ДПТ ПВ (а) и кривая намагничивания магнитопровода машины (б)

Согласно (65) ... (67) электромеханическая и механическая ха­рактеристики двигателя постоянного тока с последовательным возбуждением выражаются формулами

Ω=(U-IR)/[CeФ(I)]; (121)

Ω=U/[CeФ(I)]-MR/[CeФ(I)]2, (122)

в которых дополнительно показана зависимость магнитного пото­ка от тока якоря (возбуждения) Ф(I), a R = Rя + R+Rд.

Магнитный поток и ток связаны между собой кривой намагни­чивания 5 (см. рис.54, б), описав которую с помощью приближенного аналити­ческого выражения, можно получить формулы для характеристик двигателя.

В простейшем случае кривую намагничивания представляют прямой линией 4. Такая аппроксимация по существу означает пре­небрежение насыщением магнитной системы двигателя и позволя­ет представить зависимость потока от тока следующим образом:

Ф=αI, (123)

где α=tgφ.

φ- угол наклона касательной к кривой намагничивания двигателя (см. рис.54, б).

При линейной аппроксимации момент, как это следует из (67), является квадратичной функцией тока:

М = СеФI = СеαI2. (124)

Подставив (123) в (121), получим следующее выражение для электромеханической характеристики двигателя:

Ω = U/(СеαI) - R/(Сеα). (125)

Выразив в (125) ток через момент с помощью (124), получим следующее выражение для механической характеристики:

(126)

Для построения характеристик Ω (I) и Ω (М) проведем краткий ана­лиз формул (125) и (126). Найдем асимптоты этих характеристик, при токе и моменте, стремящихся к предельным значениям – нулю и бесконечности.

При I→0 и М→0 скорость, как это следует из (125) и (126), принимает бесконечно большое значение, т. е. Ω →∞. Это означа­ет, что ось скорости является первой искомой асимптотой характе­ристик Ω(I) и Ω(M). При I→∞ и М→∞ скорость

Ωа=-R/(Сеα), т. е. прямая с ординатой Ωа=-R/(Сеα) является второй, горизонтальной асимптотой этих характеристик.

Зависимости Ω(I) и Ω(М) в соответствии с (125) и (126) имеют при этом гиперболический характер, что позволяет с учетом сде­ланного анализа представить их в виде кривых, показанных на рис. 55.

Рис. 55. Электромеханическая (а) и механическая (б) характеристики ДПТ ПВ

Особенность полученных характеристик состоит в том, что при небольших токах и моментах двигателя, соответствующих малым моментам нагрузки, его скорость принимает большие значения, при этом характеристики не пересекают ось скорости. Таким образом, для двигателя последовательного возбуждения, включенного по основной схеме (см. рис.54, а), не существуют режимы холостого хода и генератора, работающего параллельно с сетью (или режима рекуперативного торможения), так как характеристики во втором квадранте не проходят.

Это объясняется тем, что при токе и моменте I, М→0 магнитный поток Ф→0, а, следовательно, в соответствии с (65) ЕU. Другими словами, при любой скорости Е < U, в силу чего отдачи энергии в сеть происхо­дить не может. Отметим, что из-за наличия в двигателе потока ос­таточного намагничивания Фост практически скорость холостого хода существует и равна в этом случае отношению

Ω0 = U/(СеФост). (127)

Остальные режимы работы ДПТ ПВ аналогичны режимам ра­боты ДПТ НВ: двигательный режим имеет место при 0 <Ω < ∞, ре­жим короткого замыкания - при Ω=0, а режим генератора, вклю­ченного последовательно с сетью (торможение противовключени­ем), при Ω < 0. Кроме того, ДПТ ПВ может работать в генератор­ном режиме независимо от сети посто­янного тока (динамическое торможе­ние.

Выражения (125) и (126) являются приближенными и не могут быть ис­пользованы для точных инженерных расчетов. Причина этого заключается в принятой линейной аппроксимации кривой намагничивания, в то время как реально двигатели работают в области насыщенной магнитной системы. По­этому для точных практических расчетов используются так назы­ваемые универсальные характеристики ДПТ ПВ, приведенные на рис. 56. Они представляют собой зависимости относительных ско­рости Ω* = Ω/Ωном (кривые 1) и момента М* = М/Мном (кривая 2) от относительного тока I* = I/Iном. Для получения характеристик с боль­шей точностью зависимость Ω*(I*) представляется двумя кривыми - для двигателей до 10 кВт и двигателей на 10 кВт и выше. Рассмотрим использование этих характеристик на конкретном примере.

Рис. 56. Универсальные характеристики ДПТ ПВ

Задача 27*. Рассчитать и построить естественные характеристики ДПТ ПВ типа Д31, имеющего следующие данные: Рном = 8 кВт; nном= 800 об/мин;

Uном = = 220 В; I=46,5 А; η=0,78.

Определим номинальные скорость Ωном и момент Мном

Ωном= 2πnном/60=2π800/60=83,7 рад/с;

Мном=Рномном=8000/83,7=95,5 Нм.

Задаваясь относительными значениями тока I*, по универсальным характе­ристикам ДПТ ПВ (см. рис. 56) найдем относительные значения момента М* и скорости Ω*. Затем, умножая относительные значения переменных на их но­минальные значения, получим точки для построения искомых характеристик двигателя:

Таблица 10. Механические и электромеханические характеристики ДПТ ПВ

I*

0,4

0,8

1,2

1,6

2

M*

0,3

0,7

1,3

1,9

2,6

Ω*

1,8

1,1

0,9

0,8

0,6

Ω=Ω*Ωном, рад/с

151

92

75

63

50

М=М*Мном, Нм

28,7

66,9

124

181

248

I = I* Iном, А

18,6

37,2

55,8

74,7

93

По полученным данным построим естественные электромеханическую Ω(I) (кри­вая 1) и механическую Ω(M) (кривая 3) характеристики двигателя (рис. 57), а также искусственную характеристику 2.

Рис. 57. Электромеханическая (а) и механическая (б) характеристики к задачам

Регулирование координат двигателя в соответствии с выраже­ниями (125) и (126) может осуществляться с помощью добавочных резисторов в цепи якоря, изменением магнитного потока двигате­ля и подводимого к нему напряжения.