
- •Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Санкт-Петербургский государственный университет аэрокосмического приборостроения»
- •М29 а.А. Мартынов. Электрический привод.: Учеб. Пособие/ а.А.Мартынов. СПб.: сПбГуап, 2013. 426 с.: ил.
- •1. Основные определения и параметры электропривода
- •1.1. Краткая классификация электроприводов
- •1.2. Основные технические параметры эп
- •1.3. Основные требования, предъявляемые к автоматизированным эп малой и средней мощности, предназначенных для мехатронных и робототехнических систем
- •Требования к системам защиты. Эп должны быть снабжены аппаратурой защиты, сигнализации и индикации рабочих и аварийных режимов. Эп должны иметь следующие виды защит от:
- •2. Основные уравнения и характеристики электропривода
- •2.1. Уравнения динамики электропривода как электромеханической системы
- •2.2. Полные уравнения движения электропривода [1]
- •2.3. Расчетные схемы механической части электропривода. Одномассовая расчетная схема
- •2.4. Многомассовые расчетные схемы
- •2.5. Установившееся движение электропривода и его устойчивость [1]
- •2.6. Неустановившееся движение электропривода при постоянном динамическом моменте
- •2.7. Неустановившееся движение при линейных механических характеристиках двигателя и исполнительного органа [1]
- •Регулирование координат электропривода [1]
- •3.1. Регулирование скорости
- •3.2. Регулирование момента и тока
- •3.3. Регулирование положения
- •4. Электроприводы с двигателями постоянного тока
- •4.1. Схема включения и статические характеристики двигателя постоянного тока независимого возбуждения
- •4.2. Режимы торможения, холостого хода и короткого замыкания двигателя постоянного тока независимого возбуждения [1]
- •4.3. Регулирование скорости двигателя постоянного тока независимого возбуждения с помощью резисторов в цепи якоря [1]
- •4.4. Расчет регулировочных резисторов в цепи обмотки якоря
- •4.5. Регулирование тока и момента при пуске, торможении и реверсе [1]
- •4.6. Регулирование скорости двигателя постоянного тока независимого возбуждения изменением магнитного потока
- •4.7. Регулирование скорости двигателя постоянного тока независимого возбуждения изменением напряжения якоря
- •4.8. Схема включения, статические характеристики двигателя постоянного тока последовательного возбуждения [1]
- •4.9. Регулирование координат электропривода с двигателем постоянного тока последовательного возбуждения с помощью резисторов [1]
- •Переходные процессы пуска двигателя постоянного тока независимого возбуждения и передаточные функции
- •5.1. Аналитический метод исследования переходных процессов электропривода на базе математической модели двигателя постоянного тока
- •5.2. Передаточные функции двигателя постоянного тока с независимым возбуждением
- •5.3. Регулировочная характеристика управляемого выпрямителя при различных формах кривой опорного напряжения [11]
- •5.4. Передаточная функция управляемого выпрямителя (без учета слаживающего фильтра в цепи постоянного тока) [11]
- •Электроприводы с асинхронным двигателем
- •6.1. Схема замещения, статические характеристики и режимы работы асинхронного двигателя
- •6.2. Регулирование скорости вращения асинхронного двигателя с помощью резисторов [1]
- •Регулирование координат электропривода с асинхронным двигателем изменением напряжения обмотки статора
- •6.4. Передаточная функция асинхронного двигателя при управлении по каналу напряжения обмотки статора
- •6.5. Замкнутая по скорости система асинхронного электропривода с трн
- •6.6. Регулирование скорости вращения асинхронного двигателя изменением частоты питающего напряжения
- •6.7. Передаточная функция асинхронного двигателя при управлении по каналу частоты
- •6.8. Регулирование скорости асинхронного двигателя изменением числа пар полюсов [1]
- •6.9. Регулирование скорости асинхронного двигателя в каскадных схемах его включения
- •6.10. Импульсный способ регулирования скорости асинхронного эп [1]
- •6.11. Способы торможения асинхронного двигателя
- •6.12. Электропривод с линейным асинхронным двигателем [1]
- •7. Преобразователи частоты для асинхронного электропривода [12]
- •7.1. Преобразователи частоты со звеном постоянного тока
- •7.2.Преобразователи частоты без звена постоянного тока
- •7.4. Влияние параметров ад и пч на устойчивость работы асинхронного эп
- •Выбор и проверка двигателей на нагрев
- •8.1.Расчет мощности и выбор двигателей
- •8.2. Проверка двигателей по нагреву прямым методом
- •8.3. Проверка двигателей по нагреву косвенным методом
- •9.Релейно-контакторные системы электроприводов
- •9.1. Типовые узлы и схемы управления электроприводов с двигателями постоянного тока
- •9.2. Типовые узлы и схемы управления электроприводов с асинхронными двигателями
- •9.3. Выбор аппаратов коммутации, управления и защиты
- •9.4. Электромагнитные муфты и тормозные устройств
- •10. Электропривод с синхронным двигателем
- •10.1. Схемы включения, статические характеристики и режимы работы синхронного двигателя
- •10.2. Пусковые и установившиеся режимы работы синхронного двигателя
- •11. Электроприводы с вентильным, вентильно-индукторным и шаговым двигателями
- •11.1. Электропривод с вентильным двигателем [9]
- •3. Дпр с фотоэлектронными элементами.
- •11.2. Электропривод с вентильно-индукторным двигателем
- •Достоинства и недостатки вид
- •11.3. Электропривод с шаговым двигателем [9]
- •12. Замкнутые схемы управления электроприводов
- •12.1. Системы подчиненного регулирования
- •12.2. Технические средства замкнутых схем управления электропривода
- •12.3.Микропроцессорные средства управления электропривода
- •Установившиеся режимы стабилизации скорости вращения электропривода постоянного тока
- •13.1. Эп постоянного тока с отрицательной обратной связью по напряжению
- •13.2.Эп с отрицательной обратной связью по скорости двигателя
- •13.3. Эп с положительной обратной связью (пос) по току якоря двигателя
- •13.5.Эп с отрицательной обратной связью по скорости и положительной обратной связью по току якоря
- •13.6. Двухконтурная система подчиненного регулирования с пропорциональным регулятором скорости
- •13.7. Ограничение уровня сигналов управления
- •13.8.Упреждающее токоограничение
- •14. Следящий электропривод
- •14.1. Измерители рассогласования положения
- •14.2.Типы следящих электроприводов
- •14.3.Техническое задание и основные этапы проектирования следящего эп
- •15. Электроприводы с программным и адаптивным управлением
- •15.1. Электроприводы с нечисловыми (цикловыми) программными устройствами
- •15.2. Электропривод с числовым программным управлением (чпу)
- •15.3.Ограничение ускорения при программном управлении эп
- •15.4.Электропривод с адаптивным управлением
- •16. Надежность электрического привода
- •16.1.Основные определения теории надежности
- •16.2. Количественные характеристики надежности
- •16.3.Надежность систем из последовательно и параллельно соединенных элементов
- •16.4.Порядок расчета надежности коэффициентным методом
- •17. Справочные данные по электрическим двигателям постоянного тока
4.8. Схема включения, статические характеристики двигателя постоянного тока последовательного возбуждения [1]
В ЭП электрического транспорта и ряда грузоподъемных машин и механизмов нашли широкое применение двигатели постоянного тока последовательного возбуждения (ДПТ ПВ), схема включения и кривая намагничивания которых показаны на рис. 54. Основной особенностью этих двигателей является включение обмотки возбуждения 2 последовательно с обмоткой якоря 1 и добавочным резистором 3, вследствие чего ток якоря одновременно является и током возбуждения.
Рис.54. Схема включения ДПТ ПВ (а) и кривая намагничивания магнитопровода машины (б)
Согласно (65) ... (67) электромеханическая и механическая характеристики двигателя постоянного тока с последовательным возбуждением выражаются формулами
Ω=(U-IR)/[CeФ(I)]; (121)
Ω=U/[CeФ(I)]-MR/[CeФ(I)]2, (122)
в которых дополнительно показана зависимость магнитного потока от тока якоря (возбуждения) Ф(I), a R = Rя + Roв+Rд.
Магнитный поток и ток связаны между собой кривой намагничивания 5 (см. рис.54, б), описав которую с помощью приближенного аналитического выражения, можно получить формулы для характеристик двигателя.
В простейшем случае кривую намагничивания представляют прямой линией 4. Такая аппроксимация по существу означает пренебрежение насыщением магнитной системы двигателя и позволяет представить зависимость потока от тока следующим образом:
Ф=αI, (123)
где α=tgφ.
φ- угол наклона касательной к кривой намагничивания двигателя (см. рис.54, б).
При линейной аппроксимации момент, как это следует из (67), является квадратичной функцией тока:
М = СеФI = СеαI2. (124)
Подставив (123) в (121), получим следующее выражение для электромеханической характеристики двигателя:
Ω = U/(СеαI) - R/(Сеα). (125)
Выразив в (125) ток через момент с помощью (124), получим следующее выражение для механической характеристики:
(126)
Для построения характеристик Ω (I) и Ω (М) проведем краткий анализ формул (125) и (126). Найдем асимптоты этих характеристик, при токе и моменте, стремящихся к предельным значениям – нулю и бесконечности.
При I→0 и М→0 скорость, как это следует из (125) и (126), принимает бесконечно большое значение, т. е. Ω →∞. Это означает, что ось скорости является первой искомой асимптотой характеристик Ω(I) и Ω(M). При I→∞ и М→∞ скорость
Ωа=-R/(Сеα), т. е. прямая с ординатой Ωа=-R/(Сеα) является второй, горизонтальной асимптотой этих характеристик.
Зависимости Ω(I) и Ω(М) в соответствии с (125) и (126) имеют при этом гиперболический характер, что позволяет с учетом сделанного анализа представить их в виде кривых, показанных на рис. 55.
Рис. 55. Электромеханическая (а) и механическая (б) характеристики ДПТ ПВ
Особенность полученных характеристик состоит в том, что при небольших токах и моментах двигателя, соответствующих малым моментам нагрузки, его скорость принимает большие значения, при этом характеристики не пересекают ось скорости. Таким образом, для двигателя последовательного возбуждения, включенного по основной схеме (см. рис.54, а), не существуют режимы холостого хода и генератора, работающего параллельно с сетью (или режима рекуперативного торможения), так как характеристики во втором квадранте не проходят.
Это объясняется тем, что при токе и моменте I, М→0 магнитный поток Ф→0, а, следовательно, в соответствии с (65) Е→ U. Другими словами, при любой скорости Е < U, в силу чего отдачи энергии в сеть происходить не может. Отметим, что из-за наличия в двигателе потока остаточного намагничивания Фост практически скорость холостого хода существует и равна в этом случае отношению
Ω0 = U/(СеФост). (127)
Остальные режимы работы ДПТ ПВ аналогичны режимам работы ДПТ НВ: двигательный режим имеет место при 0 <Ω < ∞, режим короткого замыкания - при Ω=0, а режим генератора, включенного последовательно с сетью (торможение противовключением), при Ω < 0. Кроме того, ДПТ ПВ может работать в генераторном режиме независимо от сети постоянного тока (динамическое торможение.
Выражения (125) и (126) являются приближенными и не могут быть использованы для точных инженерных расчетов. Причина этого заключается в принятой линейной аппроксимации кривой намагничивания, в то время как реально двигатели работают в области насыщенной магнитной системы. Поэтому для точных практических расчетов используются так называемые универсальные характеристики ДПТ ПВ, приведенные на рис. 56. Они представляют собой зависимости относительных скорости Ω* = Ω/Ωном (кривые 1) и момента М* = М/Мном (кривая 2) от относительного тока I* = I/Iном. Для получения характеристик с большей точностью зависимость Ω*(I*) представляется двумя кривыми - для двигателей до 10 кВт и двигателей на 10 кВт и выше. Рассмотрим использование этих характеристик на конкретном примере.
Рис. 56. Универсальные характеристики ДПТ ПВ
Задача 27*. Рассчитать и построить естественные характеристики ДПТ ПВ типа Д31, имеющего следующие данные: Рном = 8 кВт; nном= 800 об/мин;
Uном = = 220 В; I=46,5 А; η=0,78.
Определим номинальные скорость Ωном и момент Мном
Ωном= 2πnном/60=2π800/60=83,7 рад/с;
Мном=Рном/Ωном=8000/83,7=95,5 Нм.
Задаваясь относительными значениями тока I*, по универсальным характеристикам ДПТ ПВ (см. рис. 56) найдем относительные значения момента М* и скорости Ω*. Затем, умножая относительные значения переменных на их номинальные значения, получим точки для построения искомых характеристик двигателя:
Таблица 10. Механические и электромеханические характеристики ДПТ ПВ
I* |
0,4 |
|
0,8 |
|
1,2 |
|
1,6 |
2 |
M* |
0,3 |
|
0,7 |
|
1,3 |
|
1,9 |
2,6 |
Ω* |
1,8 |
|
1,1 |
|
0,9 |
|
0,8 |
0,6 |
Ω=Ω*Ωном, рад/с |
151 |
|
92 |
|
75 |
|
63 |
50 |
М=М*Мном, Нм |
28,7 |
|
66,9 |
|
124 |
|
181 |
248 |
I = I* Iном, А |
18,6 |
|
37,2 |
|
55,8 |
|
74,7 |
93 |
По полученным данным построим естественные электромеханическую Ω(I) (кривая 1) и механическую Ω(M) (кривая 3) характеристики двигателя (рис. 57), а также искусственную характеристику 2.
Рис. 57. Электромеханическая (а) и механическая (б) характеристики к задачам
Регулирование координат двигателя в соответствии с выражениями (125) и (126) может осуществляться с помощью добавочных резисторов в цепи якоря, изменением магнитного потока двигателя и подводимого к нему напряжения.