
- •Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Санкт-Петербургский государственный университет аэрокосмического приборостроения»
- •М29 а.А. Мартынов. Электрический привод.: Учеб. Пособие/ а.А.Мартынов. СПб.: сПбГуап, 2013. 426 с.: ил.
- •1. Основные определения и параметры электропривода
- •1.1. Краткая классификация электроприводов
- •1.2. Основные технические параметры эп
- •1.3. Основные требования, предъявляемые к автоматизированным эп малой и средней мощности, предназначенных для мехатронных и робототехнических систем
- •Требования к системам защиты. Эп должны быть снабжены аппаратурой защиты, сигнализации и индикации рабочих и аварийных режимов. Эп должны иметь следующие виды защит от:
- •2. Основные уравнения и характеристики электропривода
- •2.1. Уравнения динамики электропривода как электромеханической системы
- •2.2. Полные уравнения движения электропривода [1]
- •2.3. Расчетные схемы механической части электропривода. Одномассовая расчетная схема
- •2.4. Многомассовые расчетные схемы
- •2.5. Установившееся движение электропривода и его устойчивость [1]
- •2.6. Неустановившееся движение электропривода при постоянном динамическом моменте
- •2.7. Неустановившееся движение при линейных механических характеристиках двигателя и исполнительного органа [1]
- •Регулирование координат электропривода [1]
- •3.1. Регулирование скорости
- •3.2. Регулирование момента и тока
- •3.3. Регулирование положения
- •4. Электроприводы с двигателями постоянного тока
- •4.1. Схема включения и статические характеристики двигателя постоянного тока независимого возбуждения
- •4.2. Режимы торможения, холостого хода и короткого замыкания двигателя постоянного тока независимого возбуждения [1]
- •4.3. Регулирование скорости двигателя постоянного тока независимого возбуждения с помощью резисторов в цепи якоря [1]
- •4.4. Расчет регулировочных резисторов в цепи обмотки якоря
- •4.5. Регулирование тока и момента при пуске, торможении и реверсе [1]
- •4.6. Регулирование скорости двигателя постоянного тока независимого возбуждения изменением магнитного потока
- •4.7. Регулирование скорости двигателя постоянного тока независимого возбуждения изменением напряжения якоря
- •4.8. Схема включения, статические характеристики двигателя постоянного тока последовательного возбуждения [1]
- •4.9. Регулирование координат электропривода с двигателем постоянного тока последовательного возбуждения с помощью резисторов [1]
- •Переходные процессы пуска двигателя постоянного тока независимого возбуждения и передаточные функции
- •5.1. Аналитический метод исследования переходных процессов электропривода на базе математической модели двигателя постоянного тока
- •5.2. Передаточные функции двигателя постоянного тока с независимым возбуждением
- •5.3. Регулировочная характеристика управляемого выпрямителя при различных формах кривой опорного напряжения [11]
- •5.4. Передаточная функция управляемого выпрямителя (без учета слаживающего фильтра в цепи постоянного тока) [11]
- •Электроприводы с асинхронным двигателем
- •6.1. Схема замещения, статические характеристики и режимы работы асинхронного двигателя
- •6.2. Регулирование скорости вращения асинхронного двигателя с помощью резисторов [1]
- •Регулирование координат электропривода с асинхронным двигателем изменением напряжения обмотки статора
- •6.4. Передаточная функция асинхронного двигателя при управлении по каналу напряжения обмотки статора
- •6.5. Замкнутая по скорости система асинхронного электропривода с трн
- •6.6. Регулирование скорости вращения асинхронного двигателя изменением частоты питающего напряжения
- •6.7. Передаточная функция асинхронного двигателя при управлении по каналу частоты
- •6.8. Регулирование скорости асинхронного двигателя изменением числа пар полюсов [1]
- •6.9. Регулирование скорости асинхронного двигателя в каскадных схемах его включения
- •6.10. Импульсный способ регулирования скорости асинхронного эп [1]
- •6.11. Способы торможения асинхронного двигателя
- •6.12. Электропривод с линейным асинхронным двигателем [1]
- •7. Преобразователи частоты для асинхронного электропривода [12]
- •7.1. Преобразователи частоты со звеном постоянного тока
- •7.2.Преобразователи частоты без звена постоянного тока
- •7.4. Влияние параметров ад и пч на устойчивость работы асинхронного эп
- •Выбор и проверка двигателей на нагрев
- •8.1.Расчет мощности и выбор двигателей
- •8.2. Проверка двигателей по нагреву прямым методом
- •8.3. Проверка двигателей по нагреву косвенным методом
- •9.Релейно-контакторные системы электроприводов
- •9.1. Типовые узлы и схемы управления электроприводов с двигателями постоянного тока
- •9.2. Типовые узлы и схемы управления электроприводов с асинхронными двигателями
- •9.3. Выбор аппаратов коммутации, управления и защиты
- •9.4. Электромагнитные муфты и тормозные устройств
- •10. Электропривод с синхронным двигателем
- •10.1. Схемы включения, статические характеристики и режимы работы синхронного двигателя
- •10.2. Пусковые и установившиеся режимы работы синхронного двигателя
- •11. Электроприводы с вентильным, вентильно-индукторным и шаговым двигателями
- •11.1. Электропривод с вентильным двигателем [9]
- •3. Дпр с фотоэлектронными элементами.
- •11.2. Электропривод с вентильно-индукторным двигателем
- •Достоинства и недостатки вид
- •11.3. Электропривод с шаговым двигателем [9]
- •12. Замкнутые схемы управления электроприводов
- •12.1. Системы подчиненного регулирования
- •12.2. Технические средства замкнутых схем управления электропривода
- •12.3.Микропроцессорные средства управления электропривода
- •Установившиеся режимы стабилизации скорости вращения электропривода постоянного тока
- •13.1. Эп постоянного тока с отрицательной обратной связью по напряжению
- •13.2.Эп с отрицательной обратной связью по скорости двигателя
- •13.3. Эп с положительной обратной связью (пос) по току якоря двигателя
- •13.5.Эп с отрицательной обратной связью по скорости и положительной обратной связью по току якоря
- •13.6. Двухконтурная система подчиненного регулирования с пропорциональным регулятором скорости
- •13.7. Ограничение уровня сигналов управления
- •13.8.Упреждающее токоограничение
- •14. Следящий электропривод
- •14.1. Измерители рассогласования положения
- •14.2.Типы следящих электроприводов
- •14.3.Техническое задание и основные этапы проектирования следящего эп
- •15. Электроприводы с программным и адаптивным управлением
- •15.1. Электроприводы с нечисловыми (цикловыми) программными устройствами
- •15.2. Электропривод с числовым программным управлением (чпу)
- •15.3.Ограничение ускорения при программном управлении эп
- •15.4.Электропривод с адаптивным управлением
- •16. Надежность электрического привода
- •16.1.Основные определения теории надежности
- •16.2. Количественные характеристики надежности
- •16.3.Надежность систем из последовательно и параллельно соединенных элементов
- •16.4.Порядок расчета надежности коэффициентным методом
- •17. Справочные данные по электрическим двигателям постоянного тока
2.6. Неустановившееся движение электропривода при постоянном динамическом моменте
Неустановившееся движение ЭП имеет место, когда моменты двигателя и нагрузки отличаются друг от друга, т. е. М≠Мс. В этом случае динамический момент Мдин не равен нулю и происходит увеличение или снижение скорости движения. Наиболее типичными примерами неустановившегося движения в ЭП являются пуск, торможение и реверс двигателя, его переходы с одной скорости на другую в процессе ее регулирования или изменения нагрузки на валу.
Неустановившееся движение возникает при переходе ЭП из установившегося движения с одними параметрами к установившемуся движению с другими параметрами (если, конечно, движение устойчивое). По этой причине неустановившееся движение называют также переходным процессом или переходным режимом ЭП.
Целью рассмотрения неустановившегося движения является получение зависимостей механических переменных (координат) ЭП – моментов, скорости и угла поворота вала двигателя от времени. Рассмотрим переходные процессы в механической части ЭП, обусловленные инерционностью движущихся элементов. Иногда такие процессы называют механическими [1].
Искомые зависимости получим решением (интегрированием) дифференциального уравнения механического движения (45), а также дифференциального уравнения Ω = dφ/dt, связывающего угол поворота φ вала двигателя и его скорость Ω.
Для решения этих уравнений необходимо знать законы изменения моментов двигателя и нагрузки, а также массы и моменты инерции движущихся элементов и начальные (нулевые) значения переменных.
В общем случае моменты двигателя и нагрузки, а иногда и момент инерции могут являться функциями времени, скорости и положения ИО (угла поворота вала двигателя).
Из всего многообразия возможных переходных процессов рассмотрим наиболее часто имеющие место случаи, когда моменты двигателя и нагрузки ЭП являются постоянными величинами, не зависящими от скорости или времени, а моменты инерции и массы движущихся элементов не изменяются в переходных процессах. Другие возможные переходные процессы см. в [1 ].
Рис.11. Механические характеристики двигателя (2) и исполнительного органа (1)
На рис. 11 приведены механические характеристики двигателя 2 и нагрузки (исполнительного органа) 7, при которых их моменты неизменны, т.е. динамический момент постоянен и положителен. Уравнение движения (46) в этом случае решается методом разделения переменных и ее решение имеет вид
Постоянная интегрирования С находится из начального условия переходного процесса: при t =0 Ω = Ω нач. Подставляя это условие в (53), получим С = Ω нач. Тогда окончательно (53) принимает вид
Полученная формула показывает, что при разбеге ЭП (см. рис. 11) скорость Ω линейно зависит от времени. При (М - Мс) > 0 скорость увеличивается (прямая 4), а при (М - Мс) < 0 – снижается. Момент двигателя от времени не зависит, поэтому зависимость М(t) изображается прямой линией 3.
Рис.12. График переходного процесса разбега ЭП: М - динамический момент, Ω -угловая скорость вращения
Время переходного процесса tп.п, за которое скорость изменится от некоторого начального Ω нач до конечного Ωкон уровня, определяется из (54) при подстановке в нее t = tп. п и Ω = Ω кон:
tп. п=J(Ω кон- Ω нач)/(М - Мс). (55)
Задача 9. Рассчитать и построить зависимость Ω(t) при следующих исходных данных: М= 50 Нм; Мc= 100 Нм; J= 0,1 кг•м2; Ωнач= 100 рад/с. Рассчитать время переходного процесса, за которое скорость снизится в два раза.
Задача 10. Определить динамический момент, который при J=0,2 кг·м2 обеспечит увеличение скорости на 200 рад/с за время tп. п= 1 с.
Задача 11. Получить общее выражение для определения зависимости угла поворота вала двигателя от времени φ(t) для случая постоянного динамического момента и оценить вид этой зависимости.