
- •1. Понятие множеств. Элементы множества. Обозначение множеств. Пустое множество.
- •2. Конечные и бесконечные множества.
- •3. Равенство множеств. Подмножества. Способы задания множеств.
- •4. Числовые множества.
- •5. Пересечение множеств. Свойства.
- •6. Объединение множеств. Свойства
- •7. Разность множеств. Свойства.
- •17. Понятие функции одной переменной. Область определения и область значения функции. Основные свойства функции одной переменной. Понятие сложной функции. Обратная функция.
- •18. Правила дифференцирования функции. Таблица производных элементарных функций.
- •19. Производная сложной и степенно-показательной функции.
- •20.Достаточное условие возрастания (убывания) функции.
- •21. Определение экстремума функции одной переменной. Необходимое и достаточное условие существования экстремума. Необходимое условие экстремума
- •Достаточное условие экстремума
- •1) Первое достаточное условие:
- •2) Второе достаточное условие
- •3) Третье достаточное условие
- •Абсолютный экстремум
- •22. Выпуклость вверх (вниз) функции. Достаточное условие выпуклости вверх (вниз) функции. Точки перегиба функции. Достаточное и необходимое условие существования точки перегиба.
- •23. Асимптомы к графику функции. Примеры.
- •24. Дифференциал функции одной переменной и его геометрический смысл. Применение дифференциала к приближенным вычислениям
- •Применение дифференциала в приближенных вычислениях
- •25.Производные высших порядков функции одной переменной. Примеры
- •26. Функция нескольких переменных. График функции 2-х переменных. Линии уровня функции 2-х переменных. Полное приращение и частные приращения функций 2-х переменных
- •27. Первообразная функция и неопределенный интерграл. Свойства неопределенного интеграла
- •28. Таблица неопределенных интегралов. Интегрирование с помощью тождественных преобразований и свойств неопределенного интеграла на примерах
- •3. Интегрирование заменой переменной
- •4. Интегрирование по частям
- •29. Интегрирование методом замены переменной. Примеры. Интегрирование по частям в неопределенном интеграле
- •Интегрирование по частям
- •30. Задача о площади криволинейной трапеции, приводящая к понятию определенного интеграла. Геометрический смысл интеграла. Вычисление площади плоской фигуры с помощью определенного интеграла
- •31. Свойства определенного интеграла. Теорема Ньютона-Лейбница
- •32. Несобственные интегралы 1-го рода. Примеры
- •33. Замена переменной в определенном интеграле. Формула интегрирования по частям для определенного интеграла. Примеры
2) Второе достаточное условие
Если функция g(x) обладает второй производной причем в некоторой точке первая производная равна нулю, а вторая производная отлично от нуля. Тогда точка экстремум функции g(x), причем если , то точка является максимумом; если , то точка является минимумом.
3) Третье достаточное условие
Пусть функция g(x) имеет в некоторой окрестности точки N производных, причем значение первых (N - 1)- ой и самой функции в этой точке равно нулю, а значение N-ой производной отлично от нуля. В таком случае:
а) Если N - четно, то точка экстремум функции: у функции точка максимума, у функции точка минимума.
б) Если N - нечетно, то в точке у функции g(x) экстремума нет.
Абсолютный экстремум
Наибольшее(наименьшее) значение на сегменте [a;b] непрерывной функции g(x) достигается или в критической точке этой функции(т.е. где производная равна нулю или не существует), или в граничных точках а и b данного сегмента.
22. Выпуклость вверх (вниз) функции. Достаточное условие выпуклости вверх (вниз) функции. Точки перегиба функции. Достаточное и необходимое условие существования точки перегиба.
Дифференцируемая функция называется выпуклой вниз на интервале Х, если ее график расположен не ниже касательной к нему в любой точке интервала Х. Дифференцируемая функция называется выпуклой вверх на интервале Х, если ее график расположен не выше касательной к нему в любой точке интервала Х. Выпуклую вверх функцию часто называют выпуклой, а выпуклую вниз – вогнутой.
Точка
называется
точкой перегиба графика функции y=f(x),
если в данной точке существует касательная
к графику функции (она может быть
параллельна оси Оу) и существует такая
окрестность точки
,
в пределах которой слева и справа от
точки М график функции имеет разные
направления выпуклости.
Другими словами, точка М называется точкой перегиба графика функции, если в этой точке существует касательная и график функции меняет направление выпуклости, проходя через нее.
Если необходимо, обратитесь к разделу касательная к графику функции в точке, чтобы вспомнить условия существования невертикальной и вертикальной касательной.
На рисунке ниже представлены несколько примеров точек перегиба (отмечены красными точками). Заметим, что некоторые функции могут не иметь точек перегиба, а другие могут иметь одну, несколько или бесконечно много точек перегиба.
Необходимое условие перегиба.
Сформулируем необходимое условие перегиба графика функции.
Пусть график функции y=f(x) имеет перегиб
в точке
и
имеет при
непрерывную
вторую производную, тогда выполняется
равенство
.
Из этого условия следует, что абсциссы точек перегиба следует искать среди тех, в которых вторая производная функции обращается в ноль. НО, это условие не является достаточным, то есть не все значения , в которых вторая производная равна нулю, являются абсциссами точек перегиба.
Еще следует обратить внимание, что по
определению точки перегиба требуется
существование касательной прямой, можно
и вертикальной. Что это означает? А
означает это следующее: абсциссами
точек перегиба могут быть все
из
области определения функции, для которых
и
.
Обычно это точки, в которых знаменатель
первой производной обращается в ноль.