- •Математические методы и модели в экономике
- •Введение
- •1. Экономико-математическое моделирование и его этапы
- •2. Методы линейного программирования
- •2.1. Основные понятия
- •2.2. Постановка задачи линейного программирования и свойства ее решений
- •2.3. Графический способ решения злп
- •2.4. Симплексный метод решения злп
- •2.5. Теория двойственности
- •2.6. Основные теоремы двойственности и их экономическое содержание
- •2.7. Основные виды экономических задач, сводящихся к злп
- •2.8. Транспортная задача
- •3. Метод динамического программирования
- •3.1. Основные понятия и обозначения
- •3.2. Алгоритм реализации метода
- •4. Методы теории игр
- •4.1. Основные понятия. Игры в чистых стратегиях
- •4.2. Решение игр в смешанных стратегиях
- •4.3. Игры с природой
- •5. Сетевое планирование и управление
- •5.1. Сетевая модель и ее элементы
- •5.2. Числовые характеристики сетевого графика
- •5.3. Сетевое планирование в условиях неопределенности
- •6. Моделирование производства и потребления
- •6.1. Производственные функции и их характеристики
- •6.2. Линейная и Кобба-Дугласа производственные функции
- •6.3. Целевая функция потребления
- •7. Модель межотраслевого баланса
- •8. Моделирование экономических систем с помощью случайных процессов
- •8.1. Случайные процессы и их классификация
- •8.2. Потоки событий
- •8.3. Марковский случайный процесс с дискретным состоянием
- •8.4. Процессы гибели и размножения
- •9. Элементы теории массового обслуживания
- •9.1. Классификация моделей массового обслуживания
- •9.2. Одноканальная смо с отказами
- •9.3. Одноканальная смо с ожиданием и ограниченной очередью
- •9.4. Одноканальная смо с ожиданием и неограниченной очередью
- •Решение. Параметр потока обслуживания μ и приведенная интенсивность потока автомобилей определены в предыдущем примере:
- •9.5. Многоканальная смо с отказами
- •9.6. Многоканальная смо с ожиданием
- •Задания для самостоятельного решения
- •Список литературы
- •394030, Воронеж, ул. Карла Маркса, 67
2.6. Основные теоремы двойственности и их экономическое содержание
Теорема.
Для любых допустимых
планов
и
прямой и двойственной ЗЛП справедливо
неравенство
,
т. е.:
(2.32)
— основное неравенство теории двойственности.
Теорема
(критерий
оптимальности Канторовича).
Если для некоторых
допустимых планов
и
пары двойственных задач выполняется
неравенство
,
то
и
являются оптимальными планами
соответствующих задач.
Теорема (малая теорема двойственности). Для существования оптимального плана любой из пары двойственных задач необходимо и достаточно существование допустимого плана для каждой из них.
Теорема. Если одна из двойственных задач имеет оптимальное решение, то и другая имеет оптимальное решение, причем экстремальные значения целевых функций равны: . Если одна из двойственных задач неразрешима вследствие неограниченности целевой функции на множестве допустимых решений, то система ограничений другой задачи противоречива.
Экономическое содержание первой теоремы двойственности состоит в следующем: если задача определения оптимального плана, максимизирующего выпуск продукции, разрешима, то разрешима и задача определения оценок ресурсов. Причем цена продукции, полученной при реализации оптимального плана, совпадает с суммарной оценкой ресурсов. Совпадение значений целевых функций для соответствующих планов пары двойственных задач достаточно для того, чтобы эти планы были оптимальными. Это значит, что план производства и вектор оценок ресурсов являются оптимальными тогда и только тогда, когда цена произведенной продукции и суммарная оценка ресурсов совпадают. Оценки выступают как инструмент балансирования затрат и результатов. Двойственные оценки обладают тем свойством, что они гарантируют рентабельность оптимального плана, т. е. равенство общей оценки продукции и ресурсов, и обусловливают убыточность всякого другого плана, отличного от оптимального. Двойственные оценки позволяют сопоставить и сбалансировать затраты и результаты системы.
Теорема (о дополняющей нежесткости). Для того, чтобы планы и пары двойственных задач были оптимальны, необходимо и достаточно выполнение условий:
(2.33)
(2.34)
Условия (2.33), (2.34) называются условиями дополняющей нежесткости. Из них следует: если какое-либо ограничение одной из задач ее оптимальным планом обращается в строгое неравенство, то соответствующая компонента оптимального плана двойственной задачи должна равняться нулю; если же какая-либо компонента оптимального плана одной из задач положительна, то соответствующее ограничение в двойственной задаче ее оптимальным планом должно обращаться в строгое равенство.
Экономически это означает, что если по некоторому оптимальному плану производства расход i-го ресурса строго меньше его запаса , то в оптимальном плане соответствующая двойственная оценка единицы этого ресурса равна нулю. Если же в некотором оптимальном плане оценок его i-я компонента строго больше нуля, то в оптимальном плане производства расход соответствующего ресурса равен его запасу. Отсюда следует вывод: двойственные оценки могут служить мерой дефицитности ресурсов. Дефицитный ресурс (полностью используемый по оптимальному плану производства) имеет положительную оценку, а ресурс избыточный (используемый не полностью) имеет нулевую оценку.
Теорема (об оценках). Двойственные оценки показывают приращение функции цели, вызванное малым изменением свободного члена соответствующего ограничения задачи математического программирования, точнее
.
(2.35)
