Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Kolebania_i_volny_shpory.docx
Скачиваний:
7
Добавлен:
01.05.2025
Размер:
333.51 Кб
Скачать

9. Волновые процессы и их основные характеристики: длина волны, волновое число, фазовая скорость. Уравнения плоской и сферической волн.

Волной называется процесс распространения колебаний или других возмущений в пространстве.

Основными видами волн являются механические упругие волны, волны на поверхности жидкости и электромагнитные волны.

Упругими волнами называются волны, которые могут распространяться в упругой среде (т. е. среде, которая сопротивляется сжатию: твердой, жидкой и газообразной). К ним относятся, в частности, ударные, звуковые и сейсмические волны. Упругие волны называют также механическими волнами.

Электромагнитные волны могут распространяться как в среде, так и в вакууме (например, радиоволны, световые волны).

Характерным свойством волн является перенос энергии без переноса вещества

В продольной волне частицы колеблются вдоль направления распространения волны, в поперечной волне колебания частиц совершаются перпендикулярно направлению распространения волны. В жидкой и газообразной среде возможно распространение только продольных волн, в твердой среде - как продольных, так и поперечных.

длина́ волны́-расстояние между двумя ближайшими точками гармонической волны, находящимися в одинаковой фазе. Длина волны λ = vT, где Т — период колебаний, v — фазовая скорость волны.

ФАЗОВАЯ СКОРОСТЬ -скорость перемещения фазы волны в определ. направлении. В случае монохроматич. плоской волны вида

где А - амплитуда, j-фаза, w-круговая частота, k - волновое число, t- время, х - расстояние, отсчитываемое в направлении распространения волны)

Волновое число- величина, связанная с длиной волны λ соотношением: k = 2π/λ (число волн на длине 2π). В спектроскопии В. ч. часто называют величину, обратную длине волны (1/λ).

Уравнение плоской волны

Найдем вид функции x в случае плоской волны, предполагая, что колебания носят гармонический характер.

Направим оси координат так, чтобы ось x совпадала с направлением распространения волны. Тогда волновая поверхность будет перпендикулярна оси x. Так как все точки волновой поверхности колеблются одинаково, смещение x будет зависеть только от х и t:

Пусть колебание точек, лежащих в плоскости х=0 , имеет вид (при начальной фазе ф=0)

Найдем вид колебания частиц в плоскости, соответствующей произвольному значению x. Чтобы пройти путь x, необходимо время .

Следовательно, колебания частиц в плоскости x будут отставать по времени на t от колебаний частиц в плоскости х=0 , т.е.

– это уравнение плоской волны.

Уравнение сферической волны

В случае, когда скорость волны υ во всех направлениях постоянна, а источник точечный, волна будет сферической.

Предположим, что фаза колебаний источника равна wt (т.е. ф=0 ). Тогда точки, лежащие на волновой поверхности радиуса r, будут иметь фазу . Амплитуда колебаний здесь, даже если волна не поглощается средой, не будет постоянной, она убывает по закону 1/ r . Следовательно, уравнение сферической волны:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]