- •1. Гармонические колебания и их характеристики: амплитуда, фаза, период и частота. Метод векторных диаграмм как способ представления гармонических колебаний.
- •3. Сложение гармонических колебаний одного направления и одинаковой частоты. Биения.
- •5. Дифференциальное уравнение затухающих колебаний в колебательном контуре (с выводом) и его решение. Условный период затухающих колебаний. Коэффициент и логарифмический декремент затуханий.
- •6. Энергетические соотношения для свободных незатухающих и затухающих колебаний в контуре.
- •7. Вынужденные колебания. Амплитуда и фаза вынужденных синусоидальных колебаний. Резонанс. Резонансные кривые.
- •9. Волновые процессы и их основные характеристики: длина волны, волновое число, фазовая скорость. Уравнения плоской и сферической волн.
- •10) Волновое уравнение для электромагнитного поля. Электромагнитные волны в диэлектриках и их свойства.
- •11) Энергия электромагнитных волн. Плотность энергии и вектор плотности потока энергии э/м волн. Вектор Пойнтинга. Интенсивность электромагнитной волны.
3. Сложение гармонических колебаний одного направления и одинаковой частоты. Биения.
Пусть совершаются два гармонических колебания одного направления и одинаковой частоты
(4.1)
Уравнение результирующего колебания будет иметь вид
Убедимся в этом, сложив уравнения системы (4.1)
Применив теорему косинусов суммы и сделав алгебраические преобразования:
(4.2)
Можно найти такие величины А и φ0 , чтобы удовлетворялись уравнения
(4.3)
Рассматривая (4.3) как два уравнения с двумя неизвестными А и φ0, найдем, возведя их в квадрат и сложив, а затем разделив второе на первое:
Подставляя (4.3) в (4.2), получим:
Или окончательно, используя теорему косинусов суммы, имеем:
Тело, участвуя в двух гармонических колебаниях одного направления и одинаковой частоты, совершает также гармоническое колебание в том же направлении и с той же частотой, что и складываемые колебания. Амплитуда результирующего колебания зависит от разности фаз (φ2-φ1) сгладываемых колебаний.
В зависимости от разности фаз (φ2-φ1):
1) (φ2-φ1) = ±2mπ (m=0, 1, 2, …), тогда A= А1+А2, т. е. амплитуда результирующего колебания А равна сумме амплитуд складываемых колебаний;
2) (φ2-φ1) = ±(2m+1)π (m=0, 1, 2, …), тогда A= |А1-А2|, т. е. амплитуда результирующего колебания равна разности амплитуд складываемых колебаний
Периодические изменения амплитуды колебания, возникающие при сложении двух гармонических колебаний с близкими частотами, называются биением.
Пусть два колебания мало отличаются по частоте. Тогда амплитуды складываемых колебаний равны А, а частоты равны ω и ω+Δω, причем Δω намного меньше ω. Начало отсчета выберем так, чтобы начальные фазы обоих колебаний были равны нулю:
Решим систему
Решение системы:
Результирующее колебание можно рассматривать как гармоническое с частотой ω, амплитуда А, которого изменяется по следующему периодическому закону:
Частота изменения А в два раза больше частоты изменения косинуса. Частота биений равна разности частот складываемых колебаний: ωб = Δω
Период биений:
Определение частоты тона (звука определенной высоты биений эталонным и измеряемым колебаниями — наиболее широко применяемый на метод сравнения измеряемой величины с эталонной. Метод биений используется для настройки музыкальных инструментов, анализа слуха и т. д.
4. Затухающие колебания и их характеристики: амплитуда, частота, коэффициент затухания, логарифмический декремент затухания.
Свободные колебания технических систем в реальных условиях протекают, когда на них действуют силы сопротивления. Действие этих сил приводит к уменьшению амплитуды колеблющейся величины.
Колебания, амплитуда которых из-за потерь энергии реальной колебательной системы уменьшается с течением времени, называются затухающими.
Наиболее часто встречается случаи, когда сила сопротивления пропорциональна скорости движения
где r - коэффициент сопротивления среды. Знак минус показывает, что FC направлена в сторону противоположную скорости.
Запишем уравнение колебаний в точке, колеблющийся в среде, коэффициент сопротивлений которой r. По второму закону Ньютона
где β - коэффициент затухания. Этот коэффициент характеризует скорость затухания колебаний, При наличии сил сопротивления энергия колеблющейся системы будет постепенно убывать, колебания будут затухать.
дифференциальное
уравнение затухающих колебаний:
уравнение
затухающих колебаний:
ω
– частота затухающих колебаний:
Период
затухающих колебаний:
Затухающие
колебания при строгом рассмотрении не
являются периодическими. Поэтому о
периоде затухаюших колебаний м
ожно
говорить, когда β мало.
Если
затухания выражены слабо (β→0),
то
Затухающие
колебания можно
рассматривать как гармонические колебания, амплитуда которых меняется по экспоненциальному закону
В уравнении (1) А0 и φ0 - произвольные константы, зависящие от выбора момента времени, начиная е которого мы рассматриваем колебания
Коэффициент
затихания β обратно пропорционален
времени, в течение которого амплитуда
уменьшается в е раз.
Однако коэффициента затухания
недостаточна для характеристики
затуханий колебаний. Поэтому необходимо
ввести такую характеристику для
затухания колебаний, в которую входит
время одного колебаний. Такой
характеристикой является декремент (по-русски:
уменьшение) затухания
D,
который равен отношению амплитуд,
отстоящих по времени на период:
Логарифмический
декремент затухания равен
логарифму D:
;
Логарифмический декремент затухания обратно пропорционален числу колебаний, в результате которых амплитуда колебаний уменьшилась в е раз. Логарифмический декремент затухания - постоянная для данной системы величина.
Еще одной характеристикой колебательной система является добротность Q.
Добротность пропорциональна числу колебаний, совершаемых системой, за время релаксации τ.
Добротность Q колебательной системы является мерой относительной диссипации (рассеивания) энергии.
Добротность Q колебательной системы называется число, показывающее во сколько раз сила упругости больше силы сопротивления.
Чем больше добротность, тем медленнее происходит затухание, тем затухающие колебания ближе к свободным гармоническим.
