Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Уп Отчет 1313.docx
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
618.49 Кб
Скачать

Восьмеричная и шестнадцатеричная системы счислений

Двоичная комбинация

Значок

000

0

001

1

010

2

011

3

100

4

101

5

110

6

111

7

А вот таблица для шестнадцатеричных цифр:

Двоичная комбинация

Значок

0000

0

0001

1

0010

2

0011

3

0100

4

0101

5

0110

6

0111

7

1000

8

1001

9

1010

A

1011

B

1100

C

1101

D

1110

E

1111

F

Перевод произвести очень просто, посмотрим на примере числа 10011010010.

Разбиваем его на группы по три цифры: 010 011 010 010. И по таблице переводим: 23228.

Чтобы перевести число в шестнадцатеричное представление разбиваем двоичное число на группы по четыре цифры: 0100 1101 0010. И по таблице переводим: 4D216. С помощью калькулятора Windows мы можем убедиться, что все проделано верно.

В программистских кругах шестнадцатеричные числа принято предварять значком 0x (например, 0x4D2), такое написание пошло от языка программирования C, либо значком $ (например, $4D2), такая нотация произошла от языка программирования Pascal. Иногда в литературе используют буквы "h" и "b" для обозначения соответственно шестнадцатеричных и двоичных чисел (например, FFh или 1011b).

Перевод из одной системы счисления в другую.

Общий принцип 1: чтобы перевести число в некоторую систему счисления с основанием M ( цифрами 0, ..., M-1 ), иначе говоря, в M-ичную СС, нужно представить его в виде:

C = an * Mn + an-1 * Mn-1 + ... + a1 * M + a0.

a1..n - цифры числа, из соответствующего диапазона. an - первая цифра, a0 - последняя. Сравните эту запись с представлением числа, например, в десятичной системе.

Из системы с большим основанием - в систему с меньшим

Очевидно, чтобы найти такое представление, можно       1. разделить число нацело на M, остаток - a0.       2. взять частное и проделать с ним шаг 1, остаток будет a1... И так, пока частное не равно 0.      Искомое число будет записано в новой системе счисления полученными цифрами.

Общий принцип 2: Если основание одной системы - степень другого, например, 2 и 16, то перевод можно делать на основании таблицы: 2 -> 16 : собираем с конца числа четверки ( 16 = 2 4 ) чисел, каждая четверка - одна из цифр в 16-ричной с-ме. Пример ниже. 16 -> 2 - наоборот. Создаем четверки по таблице

Из меньшего основания - к большему:

Просто вычисляем C = an * Mn + an-1 * Mn-1 + ... + a1 * M + a0, где М - старое основание. Вычисления, естественно, идут по в новой системе счисления.

Например: из 2 - в 10: 100101 = 1*25 + 0*24 + 0*23 + 1*22 + 0*21+1=32+4+1=37.

Вообще говоря, можно сделать много хитрых трюков - в примерах реализаций они есть :)

Много вопросов задается относительно дробей и отрицательных чисел.

Отpицательные - модуль числа не меняется при переходе к другой СС, посему: запомнить знак, пpименить стандаpтный метод - поставить знак. Дальше буду говорить уже о положительных числах

  • Десятичные дроби - пеpеношу запятую, запоминая, на какую степень основания умножил.

Например, перенос в троичном числе запятой с 4-го места от конца - то же, что и умножить его на 34