
- •Вопрос 34. Элементы I группы главной подгруппы п.С. Им д.И.Менделеева получение, химические свойства.
- •Вопрос 35. Элементы II группы главной подгруппы п.С. Им д.И.Менделеева получение, химические свойства.
- •Вопрос 36. Элементы III группы главной подгруппы п.С. Им д.И.Менделеева получение, химические свойства.
- •Вопрос 37. . Элементы 5 группы главной подруппы п.С. Им. Д.И. Менделеева получение, химические свойства.
- •Вопрос 38. Химические свойства углерода.
- •Вопрос 39. Химические свойства, получение угольной кислоты, химические свойства солей угольной кислоты.
- •Вопрос 40. Химические свойствам кремния и кремневой кислоты, химические свойства солей кремневой кислоты.
- •Вопрос 41. . Элементы V группы главной подруппы п.С. Им. Д.И. Менделеева получение, химические свойства.
- •Вопрос 42. . Получение, химические свойства азота.
- •Вопрос 43. Получение, химические свойства азотистой кислоты.
- •Вопрос 44. Получение, химические свойства азотной кислоты.
- •Вопрос 45. Получение, химические свойства фосфора.
- •Вопрос 46. Химические свойства фосфорных кислот.
- •Вопрос 47. Элементы VI группы главной подгруппы п.С. Им. Д.И. Менделеева получение, химические свойства.
- •Вопрос 48. Получение, химические свойства кислорода.
- •Вопрос 49. Химические свойства серы.
- •Вопрос 50. Серная кислота и её химические свойства.
- •Вопрос 51. . Сернистая кислота и её химические свойства.
- •Вопрос 52. Элементы VII группы главной подгруппы п.С. Им. Д.И. Менделеева получение, химические свойства.
- •Вопрос 53. Получение, химические свойства водорода.
- •Вопрос 54. Кислородные соединения хлора, химические свойства.
- •Вопрос 55. Кислородные соединения брома, йода химические свойства.
- •Вопрос 56.Химические свойства марганца и его соединений.
- •Вопрос 57. Химические свойства хрома и его соединения.
- •Вопрос 58. Химические свойства железа и его соединения.
- •Вопрос 59. Химические свойства меди и соединения меди.
- •Вопрос 60. Химические свойства серебра и соединения серебра.
Вопрос 47. Элементы VI группы главной подгруппы п.С. Им. Д.И. Менделеева получение, химические свойства.
Главную подгруппу VI группы составляют кислород, сера, селен, теллур и полоний (полоний — радиоактивный элемент).
Физические свойства.
Физические свойства элементов подгруппы кислорода сильно различаются.
Так. кислород в обычных условиях существует в виде газа, состоящего из двухатомных молекул О,, сера в этих условиях представляет собой твердое вещество желтого цвета, состоящее из циклических молекул S,.
Химические свойства.
Наибольшей окислительной способностью среди элементов главной подгруппы VI группы обладают кислород и сера. В виде простых веществ они являются типичными неметаллами
Селен и теллур занимают промежуточное положение между металлами и неметаллами, а полоний проявляет уже типично металлические свойства.
Элементы подгруппы кислорода образуют соединения с водородом, которые отвечают общей формуле H,R. При растворении их в воде образуются кислоты. Сера, селен и теллур образуют оксиды типа RO, и R03. Им соответствуют кислоты H,ROj и H,ROr
В ряду О — S — Se — Те — Ро понижается окислительная активность нейтральных атомов, растут восстановительные свойства отрицательно заряженных ионов. Неметаллические свойства постепенно ослабевают.
Вопрос 48. Получение, химические свойства кислорода.
Кислоро́д — элемент 16-й группы (по устаревшей классификации — главной подгруппы VI группы), второго периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 8. Обозначается символом O . Кислород — химически активный неметалл, является самым лёгким элементом из группы халькогенов. Простое вещество кислород принормальных условиях — газ без цвета, вкуса и запаха, молекула которого состоит из двух атомовкислорода (формула O2), в связи с чем его также называют дикислород. Жидкий кислород имеет светло-голубой цвет, а твёрдый представляет собой кристаллы светло-синего цвета.
Получение
В настоящее время в промышленности кислород получают из воздуха. Основным промышленным способом получения кислорода, является криогенная ректификация. Также хорошо известны и успешно применяются в промышленности кислородные установки, работающие на основе мембранной технологии.
В лабораториях пользуются кислородом промышленного производства, поставляемым в стальных баллонах под давлением около 15 МПа.
Небольшие количества кислорода можно получать нагреванием перманганата калия KMnO4:
Используют также реакцию каталитического разложения пероксида водорода Н2О2 в присутствии оксида марганца(IV):
Кислород можно получить каталитическим разложением хлората калия (бертолетовой соли) KClO3:
К лабораторным способам получения кислорода относится метод электролиза водных растворов щелочей, а также разложение оксида ртути(II) (при t = 100 °C):
На подводных лодках обычно получается реакцией пероксида натрия и углекислого газа, выдыхаемого человеком:
Химические свойства
Сильный окислитель, взаимодействует практически со всеми элементами, образуя оксиды. Степень окисления −2. Как правило, реакция окисления протекает с выделением тепла и ускоряется при повышении температуры (см. Горение). Пример реакций, протекающих при комнатной температуре:
Окисляет соединения, которые содержат элементы с не максимальной степенью окисления:
Окисляет большинство органических соединений:
При определённых условиях можно провести мягкое окисление органического соединения:
Кислород реагирует непосредственно (при нормальных условиях, при нагревании и/или в присутствии катализаторов) со всеми простыми веществами, кроме Au и инертных газов (He, Ne, Ar, Kr, Xe, Rn); реакции с галогенами происходят под воздействием электрического разряда или ультрафиолета. Косвенным путём получены оксиды золота и тяжёлых инертных газов (Xe, Rn). Во всех двухэлементных соединениях кислорода с другими элементами кислород играет роль окислителя, кроме соединений со фтором (см. ниже #фториды кислорода).
Кислород образует пероксиды со степенью окисления атома кислорода, формально равной −1.
Например, пероксиды получаются при сгорании щелочных металлов в кислороде:
Некоторые оксиды поглощают кислород:
По теории горения, разработанной А. Н. Бахом и К. О. Энглером, окисление происходит в две стадии с образованием промежуточного пероксидного соединения. Это промежуточное соединение можно выделить, например, при охлаждении пламени горящего водорода льдом, наряду с водой, образуется пероксид водорода:
В надпероксидах кислород формально имеет степень окисления −½, то есть один электрон на два атома кислорода (ион O−2). Получают взаимодействием пероксидов с кислородом при повышенных давлении и температуре:
Калий K, рубидий Rb и цезий Cs реагируют с кислородом с образованием надпероксидов:
Озониды содержат ион O−3 со степенью окисления кислорода, формально равной −1/3. Получают действием озона на гидроксиды щелочных металлов:
В ионе диоксигенила O2+ кислород имеет формально степень окисления +½. Получают по реакции:
Фториды кислорода
Дифторид кислорода, OF2 степень окисления кислорода +2, получают пропусканием фтора через раствор щелочи:
Монофторид кислорода (Диоксидифторид), O2F2, нестабилен, степень окисления кислорода +1. Получают из смеси фтора с кислородом в тлеющем разряде при температуре −196 °C:
Пропуская тлеющий разряд через смесь фтора с кислородом при определённых давлении и температуре, получают смеси высших фторидов кислорода O3F2, О4F2, О5F2 и О6F2.
Квантовомеханические расчёты предсказывают устойчивое существование иона трифторгидроксония OF3+. Если этот ион действительно существует, то степень окисления кислорода в нём будет равна +4.
Кислород поддерживает процессы дыхания, горения, гниения.
В свободном виде элемент существует в двух аллотропных модификациях: O2 и O3 (озон).