
- •1.Генетика.Ее место в ряду ест.Наук.
- •2. Назовите основные этапы развития генетики, выдающихся учёных и их достижения.
- •4. Основа и механизмы естественного отбора.
- •3. Назовите и охарактеризуйте основные положения дарвинизма.
- •6. Растительная клетка, её строение и функции. Органоиды клетки, принимающие участие в хранении наследственной информации и передаче признаков потомству.
- •7. Технология микроклонального размножения, генетическая характеристика микроклонов, значение метода.
- •8. Кариотип. Дайте понятие терминам «метафазная хромосома», «хроматида», «днк», интерфазное ядро.
- •9. Клеточный цикл. Охарактеризуйте периоды интерфазы, изменение содержания днк в клетке по периодам интерфазы.
- •10. Каков химический состав и строение хромосом. Гомологичные и половые хромосомы.
- •11. Охарактеризуйте типы отбора в популяции.
- •12. Цитологическая характеристика митоза, его фазы. Генетический и биологический смысл митоза.
- •13. Передача наследственных признаков при вегетативном размножении, его достоинства и недостатки. Химеры. Микроклоны.
- •14. Цитологическая характеристика мейоза, его этапы, фазы и стадии. Генетический и биологический смысл мейоза.
- •15. Гомологичные хромосомы. Кроссинговер, его механизм и значение.
- •16. Охарактеризуйте биотехнологические методы, используемые в селекции растений.
- •17. Мужской гаметофит. Микроспорогенез и микрогаметогенез.
- •18. Женский гаметофит. Макроспорогенез и макрогаметогенез.
- •19. Двойное оплодотворение у растений, его генетический и биологический смысл. Апомиксис.
- •21.Наследственная и ненаследственная изменчивость.
- •22.Дать харак-ку типам и.(модификацион.Онтогенетич.Комбинативная.Мутацион.)
- •23.Статистическая оценка модификационной изм.
- •24.Основные акономерности наследования,уст.Менделем.
- •25.Доминантные и рецессивные гены,полное и не полное взаим.Генов.
- •35.Закон н.И Вавилова.
- •36.Основные положения хромосомной теории наследств.Т.Моргана.
- •34.Гены-модификаторы,супрессоры.
- •37. Генетические механизмы определения пола.
- •1) Информационная рнк (и-рнк).
- •2) Рибосомная рнк (р-рнк).
- •3) Транспортная рнк (т-рнк).
- •52.Строение нуклеиновых кислот,их функции.
- •59.Схема синтеза белка в клетке.
- •47.Инбридинг и гетерозис.Получение гетерозисных гибридов.
- •58.Генетический код и его свойства.
- •44.Классификация мутаций.Искусственный мутагенез в селекции раст.
- •56.Схема репликацииДнк.
- •48.Популяция,движущие факторы ее эволюции.
58.Генетический код и его свойства.
Генети́ческий код - это свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов.
В ДНК используется четыре нуклеотида — аденин (А), гуанин (G), цитозин (С), тимин (T).Эти буквы составляют алфавит генетического кода. В РНК используются те же нуклеотиды, за исключением тимина, который заменён похожим нуклеотидом -урацилом, который обозначается буквой У. В молекулах ДНК и РНК нуклеотиды выстраиваются в цепочки и, таким образом, получаются последовательности генетических букв.
Для построения белков в природе используется 20 различных аминокислот. Каждый белок представляет собой цепочку или несколько цепочек аминокислот в строго определённой последовательности. Эта последовательность определяет строение белка, а следовательно все его биологические свойства. Набор аминокислот также универсален для почти всех живых организмов.
Реализация генетической информации в живых клетках (то есть синтез белка, кодируемого геном) осуществляется при помощи двух матричных процессов: транскрипции (то есть синтеза иРНК на матрице ДНК) и трансляции генетического кода в аминокислотную последовательность (синтез полипептидной цепи на матрице иРНК). Для кодирования 20 аминокислот, а также сигнала «стоп», означающего конец белковой последовательности, достаточно трёх последовательных нуклеотидов. Набор из трёх нуклеотидов называется триплетом.
Свойства генетического кода:
Триплетность — значащей единицей кода является сочетание трёх нуклеотидов (триплет, или кодон).
Непрерывность — между триплетами нет знаков препинания, то есть информация считывается непрерывно.
Вырожденность (избыточность) — одной и той же аминокислоте может соответствовать несколько кодонов.
Универсальность — генетический код работает одинаково в организмах разного уровня сложности — от вирусов до человека (на этом основаны методы генной инженерии) (Из этого свойства также есть ряд исключений.
Вариации стандартного генетического кода
Первый пример отклонения от стандартного генетического кода был открыт в 1979 году при исследовании генов митохондрий человека.
Несмотря на эти исключения, у всех живых организмов генетический код имеет общие черты: кодон состоят из трёх нуклеотидов, где два первых являются определяющими, кодоны транслируются тРНК и рибосомами в последовательность аминокислот.
44.Классификация мутаций.Искусственный мутагенез в селекции раст.
Геномные мутации. В результате мутаций в ядре зиготы изменяется видовое число хромосом. Кариотип особи изучается на метафазных пластинках.
Геномные мутации могут касаться всех хромосом (полиплоидия) или отдельных хромосом (анеуплоидия). В последнем случае может добавляться отдельная хромосома (трисомия) или вместо пары будет представлена одна хромосома (моногамия). Эти мутации редко оказываются жизнеспособными, чаще они приводят летальному исходу еще в процессе эмбриогенеза (спонтанные аборты), либо к рождению ребенка с нарушениями умственного и физического развития (врожденными пороками развития). Таковы синдромы анеуплоидии в виде моно- и трисомий по аутосомным и половым хромосомам. В частности, известный синдром Дауна обусловлен трисомией по 21-й паре хромосом. Синдром Дауна связан с нарушением ряда признаков - искаженные физические способности, умственная отсталость, выраженная от легкой дебильности до тяжелых форм идиотии.
Структурные мутации.В этом случае в результате мутации изменяется структура хромосомы. Основными видами структурных мутаций хромосом являются разрывные и обменные аберрации. К разрывным аберрациям относятся разного рода фрагменты (разделение хромосомы на части), к обменным аберрациям относятся случаи, когда имеются два разрыва и хромосома на их основе преобразуется, - транслокации (перенос участка хромосомы в другую хромосому или внутри хромосомы), инверсии (поворот участка внутри хромосомы на 180°), внутренние делеции (потеря внутренних участков хромосом), кольца (замыкание в кольцо отделяющегося внутреннего участка). Структурные изменения могут образовываться перемещающимися элементами в виде участков ДНК, мобильных по своему положению в организации генома. Как правило, структурные мутации хромосом приводят к множественным дефектам развития. Так, при делеции короткого плеча 5-й хромосомы (нехватке концевого фрагмента) наблюдается заболевание, названное синдромом "кошачьего крика.
Генные мутации. При повреждении или нарушениях в порядке или замене нуклеотидов, появлении внутренней дупликации или делеции в Молекуле ДНК возникают генные (точковые) мутации. Эти изменения отдельных генов часто приводят к тяжелым дегенеративным заболеваниям, в частности, многочисленным болезням обмена веществ через нарушения синтеза белков, ферментов. Примером может служить мутация, приводящая к появлению серповидноклеточной анемии — наследственного заболевания, как правило, приводящего детей и подростков к смерти. В этом случае в эритроцитах вместо нормального гемоглобина A содержится аномальный гемоглобин S. Аномалию вызывает мутация.
Инбридинг, или близкородственное скрещивание, используют как один из этапов повышения урожайности. Для этого проводят самоопыление перекрестноопыляемых растений, что ведет к повышению гомозиготности. Через 3–4 поколения возникают так называемые чистые линии – генетически однородное потомство, полученное индивидуальным отбором от одной особи или пары особей в ряду поколений. Многие аномальные признаки являются рецессивными. В чистых линиях они проявляются фенотипически. Это приводит к неблагоприятному эффекту, снижению жизнеспособности организмов, получившему название инбредная депрессия. Но, несмотря на неблагоприятное влияние самоопыления у перекрестноопыляемых растений, его часто и успешно применяют в селекции для получения чистых линий. Они необходимы для наследственного закрепления желательных, ценных признаков, а также для проведения межлинейного скрещивания. У самоопыляющихся растений не происходит накопления неблагоприятных рецессивных мутаций, т.к. они быстро переходят в гомозиготное состояние и устраняются естественным отбором. Отдаленная гибридизация – скрещивание растений разных видов, а иногда и родов, способствующее получению новых форм. Обычно скрещивание происходит в пределах вида. Но иногда возможно получение гибридов от скрещивания растений разных видов одного рода и даже разных родов. Так, существуют гибриды ржи и пшеницы, пшеницы и дикого злака эгилопс. Однако отдаленные гибриды обычно бесплодны. Основные причины бесплодия:
– у отдаленных гибридов обычно невозможен нормальный ход созревания половых клеток;
– хромосомы обоих родительских видов растений настолько несхожи между собой, что они оказываются неспособными конъюгировать, в результате чего не происходит нормальной редукции их числа, нарушается процесс мейоза.