- •1.Что такое наука?каковы ее цели?
- •2.Что такое научный метод?
- •3.Теоретический и эмпирический уровень познания.
- •4.Что такое модель и моделирование?
- •Цели моделирования
- •Классификация по форме представления
- •5.Что дает основание для выделения микро- макро- и мегамиров? Что их объединяет?
- •14. Порядок и беспорядок в природе. Изменение энтропии как критерий соотношения порядка и хаоса.
- •15. Движение как форма существования материи
- •16. Виды движения материи и ее структурная организация.
- •17. Естественнонаучная картина мира и ее принципиальные особенности.
- •18. Концепция корпускулярно-волнового дуализма. Примеры появления дуализма в природе.
- •19. Типы физических законов.
- •20. Принципы современной физики.
- •21. Основные постулаты специальной теории относительности.
- •22. Элементарные частицы.
- •23. Модель строения атома Резерфорда-Бора
- •24. Энергия. Виды энергии.
- •25. Измерение. Приборы для изучения объектов мега- макро- микромиров.
- •26. Методы получения электро- и тепловой энергии
- •27. Законы сохранения
- •30. Фундаментальные законы классической механики.
- •31. Принцип симметрии.
- •32.Принцип дополнительности.
- •33. Принцип неопределенности.
- •34. Принцип причинности.
- •35. Определение химии как науки. Двуединая задача химии.
- •36. Учение о химических элементах.
- •37. Структурная химия
- •38. Учение о химических реакциях.
- •39. Эволюционная химия.
- •40. Классификация химических реакций.
- •1. Реакции соединения
- •2. Реакции разложения
- •3. Реакции замещения
- •4. Реакции обмена
- •1. Протолитические реакции.
- •2. Окислительно-восстановительные реакции.
- •41. Факторы влияющие на скорость химических реакций.
- •43. Принцип ле Шателье.
- •Самый тугоплавкий металл вольфрам -- температура плавления 3420°с.
- •46. Неорганические материалы. Керамика. Стекло.
- •47. Наноматериалы и нанотехнологии.
- •49. Происхождение солнечной системы.
- •50. Звезды. Этапы эволюции звезд.
- •Строение комет
- •Хвост [править]
- •52. Классическая космологическая модель (Ньютон)
- •54. Что такое жизнь. Граничные условия жизни.
- •55. Основные гипотезы о происхождении жизни.
- •56. Структура биосферы
- •57. Ноосфера – сфера разума
- •58. Биоэтика и мораль
- •59. Взаимосвязь космоса и живой природы.
- •60. Функции живого вещества
- •61. Учение Вернадского о биосфере.
- •62. Основные положения теории эволюции Дарвина
- •63. Концепция происхождения человека
- •64. Глобальные проблемы экологии
- •65. Перспективы развития биотехнологий
38. Учение о химических реакциях.
Третья концептуальная система в химии возникла на стыке химии, физики и открыла пути к пониманию биологических систем. Химический процесс в этой концепции – это мост от объектов физики к объектам биологии, т.к. возникает возможность последовательно проследить путь от таких простых микрообъектов, как электрон, протон, атом, молекула и полимер к биополимеру, к клетке, в которой совершаются немыслимые химические реакции. Пути некоторых химических реакций неисповедимы, а попросту трудноуправляемы: одни из них почему-то невозможны, другие невозможно или сложно остановить (горение, взрыв), третьи ветвятся и т.п. Методы управления химическими реакциями подразделяются на термодинамические и кинетические, при которых главенствующую роль играют те или иные катализаторы.
Каждая химическая реакция обратима. Обратимость служит основанием равновесия между прямой и обратимой реакциями. В зависимости от природы реагентов и условий процесса равновесие может смещаться в прямую либо в обратную стороны изменением температуры, давления и концентрации реагентов. Подобрать условия осуществления тех или иных, на первый взгляд, простых реакций иногда не удавалось в течение ста и более лет. Такой реакцией оказалась реакция синтеза аммиака из молекулярных азота и водорода, впервые успешно осуществленная в 1913 г. после открытий Я. Вант-Гоффа и А. Ле-Шателье в присутствии металлоорганического катализатора (первоначально специально обработанного железа) при высоком давлении и нормальной температуре.
Термодинамическое воздействие оказывает влияние на направленность реакции, а вот функции управления скоростью химической реакции выполняет химическая кинетика, ускоряя или замедляя ход реакции с помощью катализаторов и ингибиторов, соответственно. Химический катализ был открыт в 1812 г. русским химиком Константином Кирхгофом (не путать с немецким физиком Густавом Кирхгофом, установившим правило для электрической цепи, совместно с Р. Бунзеном, заложившим основы спектрального анализа, введшим понятие абсолютного черного тела, и т.д.). Среди биокатализаторов особая роль принадлежит ферментам, своеобразным живым катализаторам, сыгравшим ключевую роль в возникновении жизни.
39. Эволюционная химия.
Система эволюционной химии стала формироваться в 60–70-е годы XX века и в своей основе отвечает давней мечте химиков: освоить и перенять опыт лаборатории живого организма, понять, как из неорганической (косной) материи возникает органическая, а затем и живое вещество – жизнь. Здесь опять можно упомянуть И. Берцелиуса, немца Ю. Либиха, француза М. Бертло.
Наш выдающийся химфизик Нобелевский лауреат Н.Н. Семенов представлял химические процессы в тканях растений и животных как химическое производство живой природы, как производство неких "молекулярных машин" совершенно исключительной точности, быстроты и необычайного совершенства. Это подтверждается открытым недавно синтезом больших белковых молекул со строгой последовательностью аминокислот. Клетки имеют в своем составе субмикроскопические "сборные заводики" – рибосомы, содержащие кислоты (РНК), как сборные "машины". Каждый вид коротких молекул транспортных РНК захватывает один определенный вид аминокислот, несет их в рибосому и ставит каждую аминокислоту на свое место согласно информации, содержащейся в молекулах РНК. Тут же к аминокислотам подходят катализаторы-ферменты и осуществляют "сшивку" аминокислот в одну молекулу белка со строгим чередованием. Это настоящий природный завод, строящий молекулу по плану, выработанному организмами в процессе эволюции. Вот эти планы живых организмов и предполагается использовать в новой эволюционной химии.
А начиналось это направление в трудах великого французского биолога Луи Пастера при исследовании процесса брожения, осуществляемого деятельностью молочнокислых бактерий. Из своих наблюдений Пастер сделал вывод об особом уровне материальной организации ферментов, что в конечном итоге привело позднее к созданию такой науки, как энзимология, к успехам эволюционного катализа и молекулярной биологии.
Так было установлено, что состав и структура биополимеров имеют единый набор для всех живых организмов и что одни и те же физические и химические законы управляют как абиогенными процессами, так и процессами жизнедеятельности. Кроме того, была доказана уникальная специфичность живого, проявляющаяся не только на высших уровнях организации клетки, но и в поведении фрагментов живых организмов на молекулярном уровне, на котором также действуют закономерности других уровней. Специфика молекулярного уровня живых и неживых систем в существенном различии принципов действия ферментов и катализаторов, в различии механизмов образования полимеров и биополимеров, структура которых определяется только генетическим кодом (сегодня точно известным науке) и, наконец, в таком поразительном факте, как то, что многие химические реакции окислительно-восстановительного характера могут происходить в клетке без непосредственного контакта между реагирующими молекулами. Таким образом, в живых организмах могут происходить и происходят такие химические превращения, которые казалось бы невозможно было встретить в неживой природе. Но постепенно они стали доступны химикам, когда удалось освоить каталитический опыт природы, живой клетки.
Факт того, что ферментный катализ играл решающую, фундаментальную роль в процессе перехода от химических систем к биологическим, то есть на предбиологической стадии эволюции, в настоящее время подтверждается многими данными. Исключительно важную роль сыграла реакция по самоорганизации химических систем, проведенная советским биохимиком Б.П. Белоусовым, затем тщательно изученная А.М. Жаботинским, вошедшая в арсенал современной эволюционной химии под названием реакции Белоусова-Жаботинского. Эта реакция сопровождается образованием специфизических пространственных и временных структур (например периодическое чередование цвета жидкости) за счет циклического изменения концентраций окислителя и восстановителя использованных химических реагентов. Вот в этих реакциях самоорганизации как раз решающая роль принадлежит каталитическим процессам.
Понятие "самоорганизации" означает упорядоченность существования материальных динамических, качественно изменяющихся систем. Роль каталитических процессов в них усиливается по мере усложнения состава и структуры химических соединений. Отрадно, что определяющее значение в исследовании этого плана сыграли работы отечественных ученых И.В. Березина и особенно А.П. Руденко, создавшего в 1964–1969 гг. единую теорию химической эволюции и биогенеза. Эта теория решает в комплексе вопросы о движущих силах и механизмах эволюционного процесса, то есть о законах химической эволюции, отборе элементов и структур и их причинной обусловленности, высоте химической организации и иерархии химических систем как следствии эволюции.
Сущность теории Руденко в утверждении и обосновании того, что химическая эволюция представляет собой саморазвитие каталитических систем. Следовательно, эволюционирующим веществом являются катализаторы. В ходе реакций происходит естественный отбор тех каталитических центров, которые обладают наибольшей активностью.
А. Руденко сформулировал основной закон химической эволюции, согласно которому с наибольшей скоростью и вероятностью образуются те пути эволюционных изменений катализатора, на которых происходит максимальное увеличение его абсолютной активности.
Нелишне также отметить, что эволюционный процесс предполагает также особый дифференцированный отбор лишь тех химических элементов и соединений, которые являются основным строительным материалом для образования биологических систем. В связи с этим достаточно упомянуть, что из более чем ста химических элементов лишь шесть: углерод, водород, кислород, азот, фосфор и сера, общая весовая доля которых в организмах составляет 97,4%, получивших название органогенов, служат основой для построения живых систем.
