
- •1.Что такое наука?каковы ее цели?
- •2.Что такое научный метод?
- •3.Теоретический и эмпирический уровень познания.
- •4.Что такое модель и моделирование?
- •Цели моделирования
- •Классификация по форме представления
- •5.Что дает основание для выделения микро- макро- и мегамиров? Что их объединяет?
- •14. Порядок и беспорядок в природе. Изменение энтропии как критерий соотношения порядка и хаоса.
- •15. Движение как форма существования материи
- •16. Виды движения материи и ее структурная организация.
- •17. Естественнонаучная картина мира и ее принципиальные особенности.
- •18. Концепция корпускулярно-волнового дуализма. Примеры появления дуализма в природе.
- •19. Типы физических законов.
- •20. Принципы современной физики.
- •21. Основные постулаты специальной теории относительности.
- •22. Элементарные частицы.
- •23. Модель строения атома Резерфорда-Бора
- •24. Энергия. Виды энергии.
- •25. Измерение. Приборы для изучения объектов мега- макро- микромиров.
- •26. Методы получения электро- и тепловой энергии
- •27. Законы сохранения
- •30. Фундаментальные законы классической механики.
- •31. Принцип симметрии.
- •32.Принцип дополнительности.
- •33. Принцип неопределенности.
- •34. Принцип причинности.
- •35. Определение химии как науки. Двуединая задача химии.
- •36. Учение о химических элементах.
- •37. Структурная химия
- •38. Учение о химических реакциях.
- •39. Эволюционная химия.
- •40. Классификация химических реакций.
- •1. Реакции соединения
- •2. Реакции разложения
- •3. Реакции замещения
- •4. Реакции обмена
- •1. Протолитические реакции.
- •2. Окислительно-восстановительные реакции.
- •41. Факторы влияющие на скорость химических реакций.
- •43. Принцип ле Шателье.
- •Самый тугоплавкий металл вольфрам -- температура плавления 3420°с.
- •46. Неорганические материалы. Керамика. Стекло.
- •47. Наноматериалы и нанотехнологии.
- •49. Происхождение солнечной системы.
- •50. Звезды. Этапы эволюции звезд.
- •Строение комет
- •Хвост [править]
- •52. Классическая космологическая модель (Ньютон)
- •54. Что такое жизнь. Граничные условия жизни.
- •55. Основные гипотезы о происхождении жизни.
- •56. Структура биосферы
- •57. Ноосфера – сфера разума
- •58. Биоэтика и мораль
- •59. Взаимосвязь космоса и живой природы.
- •60. Функции живого вещества
- •61. Учение Вернадского о биосфере.
- •62. Основные положения теории эволюции Дарвина
- •63. Концепция происхождения человека
- •64. Глобальные проблемы экологии
- •65. Перспективы развития биотехнологий
34. Принцип причинности.
Принцип причинности обычно подразумевает запаздывание одного события относительно другого, т.е. необходимое (но не достаточное) условие причинной связи. Ввести достаточное условие причинной связи означает определить какая наблюдаемая является причиной, а какая следствием. Интуитивное понимание этого различия допустимо в обиходе, но в причинной механике неудовлетворительно. Поэтому в причинной механике введено формальное понятие причинности с помощью которых далее вводится основная аксиома причинной механики. Последняя и выражает принцип причинности на строго формальном уровне. Эффект нелокальности заставляет разграничивать принцип сильной и слабой причинности. Принцип сильной причинности: причина предшествует всем возможным следствиям. Принцип слабой причинности: причина, инициированная наблюдателем, предшествует всем возможным следствиям. Эффект нелокальности нарушает принцип сильной причинности. Это означает, что следствие неконтролируемого процесса - причины могут опережать его. При этом оказывается, что величина опережения равна классическому запаздыванию. Интерференция запаздывающего и опережающего сигналов может приводить к нулевому лагу в нелокальных корреляциях. Сверхсветовая коммуникация не противоречит, однако, теории относительности, поскольку никакого реального движения частиц (передачи импульса) не происходит. Более того, не происходит в полном смысле и сверхсветовой передачи информации, поскольку для ее восстановления в приемнике (следствии), кроме нелокального канала связи, должен присутствовать и классический локальный (досветовой) канал. Нарушение сильной причинности не приводит к парадоксам, т.к. наблюдаются опережающие следствия только таких причин, которыми наблюдатель не может управлять. Опережающие нелокальные корреляции могут, однако, использоваться для прогноза естественных диссипативных процессов.
35. Определение химии как науки. Двуединая задача химии.
Химия как наука
Химия - наука о веществах, их строении, свойствах и превращениях. В широком понимании, вещество - это любой вид материи, обладающий собственной массой, например элементарные частицы. В химии понятие вещества более узкое, а именно: вещество - это любая совокупность атомов и молекул.
Превращения веществ, сопровождающиеся изменением состава молекул, называются химическими реакциями. Традиционная химия изучает реакции, которые происходят на макроскопическом уровне (в лаборатории или в окружающем мире), и интерпретирует их на атомно-молекулярном уровне. Известно, например, что сера горит на воздухе голубым пламенем, давая резкий запах. Это - макроскопическое явление.
Современная химия способна изучать химические реакции с участием отдельных молекул, обладающих строго определенной энергией. Пользуясь этим, можно управлять течением химических реакций, подавая энергию в определенные участки молекулы. Управление химическими процессами на молекулярном уровне - одна из основных особенностей современной химии.
Химия как метод изучения химических свойств и строения веществ является чрезвычайно многогранной и плодотворной наукой. На сегодняшний день известно около 15 млн. органических и около полумиллиона неорганических веществ, причем каждое из этих веществ может вступать в десятки реакций, и каждое из них имеет внутреннее строение. Внутреннее строение определяет химические свойства; в свою очередь, по химическим свойствам мы часто можем судить о строении вещества.
Современная химия настолько разнообразна как по объектам, так и по методам их исследования, что многие ее разделы представляют собой самостоятельные науки. Взаимодействие химии и физики дало сразу две науки: физическую химию и химическую физику, причем эти науки, несмотря на сходство названий, изучают совершенно разные объекты. Физическая химия исследует вещества, состоящие из большого числа атомов и молекул, с помощью физических методов и на основе законов физики. Химическая физика основной упор делает на физическом исследовании элементарных химических процессов и строения молекул, ее предметом являются отдельные частицы вещества.
Одним из передовых направлений химии является биохимия - наука, изучающая химические основы жизни.
Чрезвычайно интересные результаты получены в области космической химии, которая занимается химическими процессами, протекающими на планетах и звездах, а также в межзвездном пространстве.
Самой молодой областью химии является возникшая буквально в последнее десятилетие математическая химия. Ее задача - применение математических методов для обработки химических закономерностей, поиска связей между строением и свойствами веществ, кодирования веществ по их молекулярной структуре, подсчета числа изомеров органических веществ. Cовременная химия самым тесным образом взаимодействует со всеми другими областями естествознания. Ни одно серьезное химическое исследование не обходится без использования физических методов для установления структуры веществ и математических методов для анализа результатов.
Основу химии составляют атомно-молекулярная теория, теория строения атомов и молекул, закон сохранения массы и энергии и периодический закон.
Химия, в отличие от многих других наук (например, биологии), сама создает свой предмет исследования. Как никакая другая наука, она является одновременно и наукой, и производством
Химия всегда была нужна человечеству в основном для того, чтобы получать из веществ природы по возможности все необходимые металлы и керамику, известь и цемент, стекло и бетон, красители и фармацевтические препараты, взрывчатые вещества и горюче-смазочные материалы, каучук и пластмассы, химические волокна и материалы с заданными электрофизическими свойствами. Поэтому все химические знания», приобретенные за многие столетия и представленные в виде теорий, законов, методов, технологий, объединяет одна-единственная непреходящая, главная задача химии.
Это задача получения веществ с необходимыми свойствами. Но это – производственная задача, и, чтобы ее реализовать, надо уметь из одних веществ производить другие, то есть осуществлять качественные превращения вещества. А поскольку качество – это совокупность свойств вещества, надо знать, от чего зависят свойства. Иначе говоря, чтобы решить названную производственную задачу, химия должна решить теоретическую задачу генезиса (происхождения) свойств вещества.
Таким образом, основанием современной химии выступает двуединая проблема – получение веществ с заданными свойствами (на достижение чего направлена производственная деятельность человека) и выявление способов управления свойствами вещества (на реализацию чего направлена научно-исследовательская деятельность).
Это и есть основная проблема химии. Она же является системообразующим началом данной науки. Эта проблема возникла в древности и не теряет своего значения в наши дни. Естественно, что в разные исторические эпохи она решалась по-разному, так как способы ее решения зависят от уровня материальной и духовной культуры общества, а также от внутренних закономерностей, присущих ходу научного познания.
Достаточно сказать, что изготовление таких материалов, как, например, стекло и керамика, краски и душистые вещества, в древности осуществлялось совершенно иначе, чем в XVIII веке и позже.