
- •1.Что такое наука?каковы ее цели?
- •2.Что такое научный метод?
- •3.Теоретический и эмпирический уровень познания.
- •4.Что такое модель и моделирование?
- •Цели моделирования
- •Классификация по форме представления
- •5.Что дает основание для выделения микро- макро- и мегамиров? Что их объединяет?
- •14. Порядок и беспорядок в природе. Изменение энтропии как критерий соотношения порядка и хаоса.
- •15. Движение как форма существования материи
- •16. Виды движения материи и ее структурная организация.
- •17. Естественнонаучная картина мира и ее принципиальные особенности.
- •18. Концепция корпускулярно-волнового дуализма. Примеры появления дуализма в природе.
- •19. Типы физических законов.
- •20. Принципы современной физики.
- •21. Основные постулаты специальной теории относительности.
- •22. Элементарные частицы.
- •23. Модель строения атома Резерфорда-Бора
- •24. Энергия. Виды энергии.
- •25. Измерение. Приборы для изучения объектов мега- макро- микромиров.
- •26. Методы получения электро- и тепловой энергии
- •27. Законы сохранения
- •30. Фундаментальные законы классической механики.
- •31. Принцип симметрии.
- •32.Принцип дополнительности.
- •33. Принцип неопределенности.
- •34. Принцип причинности.
- •35. Определение химии как науки. Двуединая задача химии.
- •36. Учение о химических элементах.
- •37. Структурная химия
- •38. Учение о химических реакциях.
- •39. Эволюционная химия.
- •40. Классификация химических реакций.
- •1. Реакции соединения
- •2. Реакции разложения
- •3. Реакции замещения
- •4. Реакции обмена
- •1. Протолитические реакции.
- •2. Окислительно-восстановительные реакции.
- •41. Факторы влияющие на скорость химических реакций.
- •43. Принцип ле Шателье.
- •Самый тугоплавкий металл вольфрам -- температура плавления 3420°с.
- •46. Неорганические материалы. Керамика. Стекло.
- •47. Наноматериалы и нанотехнологии.
- •49. Происхождение солнечной системы.
- •50. Звезды. Этапы эволюции звезд.
- •Строение комет
- •Хвост [править]
- •52. Классическая космологическая модель (Ньютон)
- •54. Что такое жизнь. Граничные условия жизни.
- •55. Основные гипотезы о происхождении жизни.
- •56. Структура биосферы
- •57. Ноосфера – сфера разума
- •58. Биоэтика и мораль
- •59. Взаимосвязь космоса и живой природы.
- •60. Функции живого вещества
- •61. Учение Вернадского о биосфере.
- •62. Основные положения теории эволюции Дарвина
- •63. Концепция происхождения человека
- •64. Глобальные проблемы экологии
- •65. Перспективы развития биотехнологий
32.Принцип дополнительности.
В 1927 году Бор сформулировал принципиальное положение квантовой механики – принцип дополнительности, согласно которому получение экспериментальной информации об одних физических величинах, описывающих микрообъект (элементарную частицу, атом, молекулу), неизбежно связано с потерей информации о некоторых других величинах, дополнительных к первым. Такими взаимно дополнительными величинами являются, например, координата частицы и ее импульс (или скорость), потенциальная и кинетическая энергии и др.
Рассмотрим простой пример, который хорошо иллюстрирует принцип дополнительности. Бор обратил внимание на очень простой и понятный факт: координату и импульс микрочастицы нельзя измерить не только одновременно, но и с помощью одного и того же прибора. В самом деле, чтобы измерить импульс микрочастицы и при этом не очень сильно его изменить, необходим очень легкий подвижный прибор. Но именно эта подвижность приводит к тому, что при попадании в такой прибор микрочастицы его положение будет весьма неопределенно. Для измерения координаты мы должны взять другой, очень массивный прибор, который не сдвинется с места при попадании в него микрочастицы. Но в этом случае произойдет изменение импульса микрочастицы, которое прибор даже не заметит. Это простейшая экспериментальная иллюстрация к соотношению неопределенностей Гейзенберга: нельзя в одном и том же опыте определить обе характеристики микрообъекта – координату и импульс. Для этого необходимы два измерения и два принципиально разных прибора, свойства которых дополняют друг друга.
В соответствии с принципом дополнительности волновое и корпускулярное описания микропроцессов не исключают и не заменяют, а дополняют друг друга. Для формирования представления о микрообъекте необходим синтез этих двух описаний.
Квантовый объект – это не частица и не волна, и даже не то и другое одновременно. Квантовый объект – это нечто третье, не равное простой сумме свойств волны и частицы (точно так же, как мелодия – больше, чем сумма составляющих ее звуков). Это квантовое «нечто» не дано нам в ощущение, тем не менее оно, безусловно, реально. У нас нет органов чувств, чтобы вполне представить себе свойства этой реальности. Однако сила нашего интеллекта, опираясь на опыт, позволяет все-таки ее познать.
33. Принцип неопределенности.
Принцип неопределенности. Экспериментальные исследования свойств микрочастиц (атомов, электронов, ядер, фотонов и др.) показали, что точность определения их динамических переменных (координат, кинетической энергии, импульсов и т.п.) ограничена и регулируется открытым в 1927 г. В. Гейзенбергом принципом неопределенности. Согласно этому принципу динамические переменные, характеризующие систему, могут быть разделены на две (взаимно дополнительные) группы:
временные и пространственные координаты (t и q); 2) импульсы и энергия (p и E).
При этом невозможно определить одновременно переменные из разных групп с любой желаемой степенью точности (например, координаты и импульсы, время и энергию). Это связано не с ограниченной разрешающей способностью приборов и техники эксперимента, а отражает фундаментальный закон природы. Его математическая формулировкадается соотношениями:
где q, p, E, t - неопределенности (погрешности) измерения координаты, импульса, энергии и времени, соответственно; h - постоянная Планка.
Обычно достаточно точно указывают значение энергии микрочастицы, так как эта величина сравнительно легко определяется экспериментально.