- •Л.В. Белозерцева
- •“Начертательная геометрия и
- •Введение.
- •1. Методы проецирования
- •1.1. Центральное проецирование
- •1.2. Параллельное проецирование
- •1.3. Основные инвариантные свойства параллельного
- •1.4. Прямоугольное (ортогональное) проецирование.
- •1.5. Пространственная модель координатных плоскостей
- •1.6. Плоскостная модель координатных плоскостей (эпюр)
- •2. Ортогональные проекции точки
- •3. Ортогональные проекции прямой
- •3.1. Следы прямой
- •3.2. Прямые частного положения
- •3.2.1. Прямые уровня
- •3.2.2. Проецирующие прямые
- •3 .3. Взаимное положение прямых
- •3 А) б) в) Рис.3.6. .4. Определение натуральной величины отрезка
- •4. Ортогональные проекции плоскости
- •4.1. Способы задания плоскости на чертеже
- •4.2. Следы плоскости
- •4.3 Плоскости частного положения
- •4.3.1. Проецирующие плоскости
- •4.3.2. Плоскости уровня
- •4.4. Линии уровня плоскости
- •5. Взаимное расположение прямой и плоскости,
- •5.1. Построение линии пересечения двух плоскостей
- •5.2. Пересечение прямой линии с плоскостью
- •1) Пересечение прямой линии с плоскостью перпендикулярной
- •2) Пересечение проецирующей прямой с плоскостью
- •3) Пересечение прямой общего положения с плос-костью общего положения.
- •6. Методы преобразования
- •6.1. Метод плоскопараллельного перемещения
- •6.1.1. Способ параллельного перемещения
- •6.1.2. Способ вращение вокруг оси, перпендикулярной
- •6.2. Метод перемены плоскостей проекций.
- •7. Кривые линии и их проекционные свойства.
- •7.1. Основные понятия и определения
- •7 .2. Некоторые свойства проекций пространственных и
- •7.3. Проекции плоских кривых
- •7.3.1. Изображение окружности на комплексном чертеже
- •7 .4. Винтовые линии
- •8. Поверхности
- •8.1. Способы образования и задания поверхностей,
- •8.2. Классификация поверхностей
- •8.2.1. Линейчатые поверхности
- •8.2.2. Поверхности вращения
- •9. Пересечение поверхностей
- •9.1. Алгоритм решения задач на пересечение поверхностей
- •9 .2. Метод секущих плоскостей
- •9.2.1. Применение метода секущих плоскостей при
- •9.3. Метод концентрических сфер
- •9.4. Метод эксцентрических сфер
- •9.5. Особые случаи пересечения двух поверхностей 2-го
- •9.6. Построение линии пересечения поверхностей, когда
- •9.7. Пересечение поверхности плоскостью
- •9.7.1. Конические сечения
- •9.7.2. Сечение сферы
- •10. Развертки
- •10.1. Основные свойства разверток поверхностей
- •10.2. Развертка поверхности многогранников
- •10.2.1. Способ треугольников (триангуляции)
- •10.2.2. Способ нормального сечения
- •10.2.3. Способ раскатки
- •10.3. Построение разверток конических и
- •Литература
- •Содержание
- •Редактор л.М. Борискина
7. Кривые линии и их проекционные свойства.
7.1. Основные понятия и определения
Кривую линию можно представить как траекторию точки, перемещающейся в пространстве или на плоскости,
Кривая линия так же может быть получена в результате пересечения поверхности с плоскостью или двух поверхностей между собой,
Кривые линии могут быть плоские, т.е. такие, все точки которых принадлежат одной плоскости и пространственные, точки которых не принадлежат одной плоскости.
Примерами плоских кривых являются: окружность, эллипс, парабола. Примером пространственной кривой является винтовая линия,
Линия считается закономерной, если в своем образовании она подчинена какому - нибудь закону.
Если, при этом, кривая в декартовой системе координат определяется алгебраическим уравнением, то она называется алгебраической. Примерами алгебраических кривых являются окружность, эллипс, парабола, гипербола. Степень уравнения кривой определяет порядок кривой.
Кривая линия определяется положениями составляющих ее точек, Точки кривой определяются их координатами.
На чертеже кривая задается своими проекциями. Для построения ортогональных проекций кривой (пространственной или плоской) необходимо построить проекции ряда точек, принадлежащих этой кривой, и соединить их между собой в той же последовательности, в какой они располагались на оригинале, При задании кривой ее проекциями необходимо указать, по крайней мере, проекции одной точки, принадлежащей кривой (рис.7.1.).
По чертежу кривой в общем случае можно без дополнительных построений определить пространственная она или плоская. На рис.7.1. кривая а пространственная, т.к. она имеет конкурирующие точки С, D. Если по чертежу не понятно, плоская кривая или пространственная, требуются дополнительные построения. На кривой нужно выбрать три произвольные точки и проверить, лежит ли любая четвертая точка кривой в плоскости, определяемой первыми тремя. Кривая m, изображенная на рис.7.2. пространственная, т.к. точка М(М, М) не лежит в плоскости заданной точками А, В, С этой кривой.
7 .2. Некоторые свойства проекций пространственных и
плоских кривых
Если точка А принадлежит кривой m, то проекция этой точки А принадлежит проекции m кривой. Секущая и касательная к кривой проецируются соответственно в секущую и касательную к проекции кривой. Пусть через точку А кривой m проведена секущая n (рис.7.3.).
П
роекция
секущей определяется точками А
и В
принадлежащими проекции m
рассматриваемой кривой. Прямая n,
пересекающая проекцию кривой, является
по отношению к m
секущей. Касательную t
можно рассматривать как предельное
положение секущей, которое занимает
последняя при сближении точек пересечения
А и В в одну точку, В этом случае совпадут
друг с другом и их проекции, т.е. проекция
n
секущей превратиться в касательную t
к проекции m
кривой.
7.3. Проекции плоских кривых
Чтобы наиболее точно передать форму кривой линии, при построении ее проекций необходимо, прежде всего, отложить характерные точки. Такими точками являются особые точки кривой, а так же точки наиболее удаленные от плоскостей проекций и наиболее близкие к ним.
Точка кривой называется обыкновенной, если в этой точке к кривой можно провести единственную касательную. На рис.7.4. такой точкой является точка М.
Д
Рис.7.4.
Н
а
рис.7.6. выполнено построение горизонтальной
проекции l
кривой линии 1, принадлежащей плоскости
(h,f)
по заданной фронтальной 1.
Точки А, К, N,
D,
Е - характерные. А - точка, наиболее
удаленная от горизонтальной плоскости
проекции, К - точка, наиболее удаленная
от фронтальной плоскости проекций, Е -
самая низкая, D
- точка возврата, N - точка прекращения.
Точки В, С - промежуточные. Все точки кривой строятся по условию принадлежности их плоскости.
