
- •Курс лекций "энергосбережение в теплоэнергетике и технологиях" Литература
- •Лекция №1 Энергоресурсы. Актуальность энергосбережения в России и мире.
- •Лекция №2 Основы государственной политики в области энергосбережения.
- •3) Постановления Правительства Российской Федерации.
- •Глава I. Общие положения
- •Глава II. Стандартизация, сертификация и метрология в области энергосбережения
- •Глава III. Основы государственного управления энергосбережением
- •Глава IV. Экономические и финансовые механизмы энергосбережения
- •Глава V. Международное сотрудничество в области энергосбережения
- •Глава VI. Образование и подготовка кадров. Пропаганда эффективного использования энергетических ресурсов
- •Глава VII. Ответственность за нарушение положений настоящего федерального закона
- •Глава VIII. Заключительные положения
- •Лекция 3. Энергетические характеристики объектов теплоэнергетики и промышленных предприятий.
- •Лекция 4. Энергоаудит.
- •1. Задачи энергоаудита
- •2. Правовые основы энергоаудита
- •Рекомендации по порядку аккредитации энергоаудиторов в органах Государственного энергетического надзора.
- •3. Общие этапы энергоаудита и их содержание
- •4. Энергоаудит промышленного предприятия
- •Эффективность применения злектроприводов с частотными регуляторами (чрп)
- •Анализ режимов работы системы электроосвещения
- •4.2. Энергоаудит теплотехнического и технологического оборудования
- •Тепловой баланс
- •Лекция 5. Углубленные энергетические обследования.
- •Раздел 1. Составление энергетического паспорта объекта и разработка предложений по реализации энергосберегающих мероприятий.
- •Раздел 2. Экспертиза проекта и разработка технических решений по его совершенствованию.
- •Раздел 3. Разработка нормативных показателей расхода тэр и других нормативно-методических и информационных материалов.
- •Раздел 1. Составление энергетического паспорта объекта и разработка предложений по реализации энергосберегающих мероприятий
- •Раздел II. Экспертиза проекта и разработка технических решений по его совершенствованию
- •4. Анализ проекта котельной
- •6. Анализ проекта тепловой сети
- •7. Анализ проекта автоматизации объектов теплоснабжения.
- •Раздел III. Разработка нормативных показателей расхода топливно-энергетических ресурсов и других нормативно-методических и информационных материалов
- •11. Определение удельного расхода топлива и электроэнергии на отпуск тепла
- •1. Назначение энергобаланса
- •Лекция 6. Рационализация энергоиспользования на тэс.
- •4. Анализ состояния оборудования, эффективности работы элементов технологической схемы.
- •4.1. Котельное оборудование
- •4.2. Турбинное оборудование
- •4.3. Оборудование электрического цеха
- •4.4. Оборудование химического цеха
- •4.5. Топливно-транспортное оборудование.
- •4.6. Здания и сооружения
- •7. Анализ выполнения мероприятий по реализации резервов тепловой экономичности
- •Лекция 7. Энергосбережение в электрических сетях и в системах аккумуляции электроэнергии.
- •Лекция 8. Энергосбережение при производстве и распределении тепловой энергии.
- •1) Энергосбережение на тэц.
- •2) Энергосбережение на рк.
- •Энергосбережение в промышленных котельных предприятия.
- •4) Энергосбережение на отдельных энергетических установках непосредственно на предприятиях, в жилых зданиях и т.П..
- •Лекция 9. Энергосбережение на промышленных предприятиях различного профиля.
- •Лекция №3 Теплотехнология. Энергетическое и энерготехнологическое оборудование. Основные виды промышленных тепло- и массообменных процессов и установок
- •Теплоносители и их характеристика.
- •Характеристики некоторых высокотемпературных теплоносителей
- •Чугунно-стальные рекуператоры (термоблоки)
Теплоносители и их характеристика.
Теплоносители классифицируются по назначению, агрегатному состоянию, диапазону рабочих температур и давлений.
По назначению выделяют греющий, охлаждающий (хладоноситель), промежуточные тепло- и хладоносители, хладагент, сушильный агент и др.
По агрегатному состоянию различают однофазные и многофазные (чаще двухфазные) теплоносители.
к однофазным относятся низкотемпературная плазма (пламя), газы, неконденсирующиеся пары, смеси газов, некипящие и неиспаряющиеся при рабочем давлении жидкости, их смеси, растворы, твердые материалы (чаще сыпучие).
К двухфазным и многофазным теплоносителям относятся кипящие, испаряющиеся и распыляемые газом жидкости, конденсирующиеся пары, плавящиеся и затвердевающие твердые вещества, пены, газовзвеси, аэрозоли, эмульсии, суспензии, шламы, пасты и прочие сложные системы.
По диапазону рабочих температур выделяют высоко-, средне-, низкотемпературные и криогенные теплоносители.
к высокотемпературным: относятся газообразные теплоносители с tг= до 1500 С (дымовые и топочные газы), капельные жидкости с температурой кипения при атмосферном давлении выше 200 С (минеральные масла, расплавы солей и жидкие металлы);
к среднетемпературным: относятся водяной пар (tп= до 650 С), воду (tв= до 375 С) и воздух (tвоз= до 100 С);
к низкотемпературным: относятся теплоносители с температурой кипения при атмосферном давлении не выше 0 С (холодильные агенты) Например: фреон-12, -22, аммиак и др.
к криогенным: относятся сжиженные газы (кислород, гелий, водород, изот и др.) и их пары. Область их применения лежит ниже –150С.
Водяной пар, как греющий теплоноситель, в теплообменных аппаратах получил большое распространение благодаря ряду его достоинств
Его можно транспортировать по трубопроводам на значительные расстояния (до нескольких сотен метров).
Интенсивная теплоотдача от конденсирующегося водяного пара способствует уменьшению поверхности теплообмена.
Конденсация водяного пара сопровождается большим уменьшением его энтальпии; благодаря этому для передачи сравнительно больших количеств тепла требуются небольшие весовые количества пара.
Постоянство температуры конденсации при заданном давлении облегчает поддержание постоянства режима и регулирование процесса в аппаратах.
Основным недостатком водяного пара является неизбежное и значительное повышение давления с ростом температуры. Например, при давлении 0,981 105 Па (1 кгс/см2) температура насыщенного пара составляет 99,1 °С, а температура насыщенного пара 309,5 °С может быть получена только при давлении 98,1 105 Па. Поэтому паровой обогрев применяется для процессов нагревания только до умеренных температур (порядка 60150°С). Обычно давление греющего .пара в теплообменниках составляет от 1,96105 до 11,8-105 Па. Для высоких температур эти теплообменники очень громоздки (имеют толстые стенки и фланцы), весьма дороги и поэтому применяются редко.
Горячая вода, как греющий теплоноситель, получила большое распространение, особенно в отопительных и вентиляционных установках. Она приготовляется в специальных водогрейных котлах, производственных технологических агрегатах (например, в печах) или водонагревательных установках. Горячую воду, как теплоноситель, можно транспортировать по трубопроводам на значительные расстояния (на несколько десятков километров). Понижение температуры воды в хорошо изолированных трубопроводах составляет не более 1 °С на 1 км.
Достоинством воды как теплоносителя является сравнительно высокий коэффициент теплообмена. Однако горячая вода из тепловых сетей в производственных теплообменниках используется редко, так как в течение отопительного сезона температура ее непостоянна и изменяется от 70 до 130°С, а в летнее время тепловые сети не работают.
Дымовые и топочные газы применяются в качестве греющего теплоносителя, как правило, на месте их получения для непосредственного обогревания различных промышленных изделий и материалов, если качество последних несущественно изменяется при загрязнении сажей и золой. Если же загрязнение обрабатываемого материала недопустимо, то подогрев его дымовыми газами ведется посредством воздуха, который играет роль промежуточного теплоносителя, т. е. дымовые газы через теплопроводную стенку в рекуперативных теплообменниках отдают тепло воздуху, воздух—обрабатываемому материалу. Дымовые газы могут применяться в теплообменниках для нагрева, выпарки и термической обработки газообразных, жидких и твердых веществ.
Достоинством дымовых и топочных газов как теплоносителя является возможность достижения высокой температуры при атмосферном давлении.
Недостатками
–громоздкость аппаратуры, обусловленная низкой теплоотдачей от газов к стенке;
–сложность регулирования рабочего процесса в теплообменном аппарате4
пожарная опасность и сравнительно быстрый износ поверхностей теплообмена от золы, а также при чистке аппаратов.
существенным недостатком дымовых газов является также возможность использования их только непосредственно на месте получения, так как транспортировка их даже на небольшие расстояния требует значительных расходов электроэнергии, громоздких каналов и связана с большими тепловыми потерями.
Кроме перечисленных теплоносителей в промышленности для высокотемпературного обогрева, кроме дымовых газов, применяют минеральные масла, органические соединения, расплавленные металлы и соли. Характеристика некоторых 'высокотемпературных теплоносителей дана в табл. 1
Таблица 1