
- •Классификация электрических сетей
- •Назначение, область применения
- •Масштабные признаки, размеры сети
- •Род тока
- •Принципы работы
- •Классы напряжения
- •Преобразование напряжения
- •Структура сети
- •Трёхфазная система электроснабжения
- •Описание
- •Преимущества
- •Схемы соединений трехфазных цепей Звезда
- •Соотношение между линейными и фазными токами и напряжениями
- •Мощность трёхфазного тока
- •Последствия отгорания (обрыва) нулевого провода в трехфазных сетях.
- •Проблема гармоник, кратных третьей
- •Математические расчёты
- •Типовые оценки качества электропотребления
- •Несинусоидальность
- •Коррекция коэффициента мощности
- •Разновидности коррекции коэффициента мощности
- •Типы устройств по назначению:
- •Комплексные трансформаторные подстанции.
- •Комплексные распределительные устройства.
- •Режимы работы нейтралей в электроустановках
- •Общие сведения об электроустановках
- •1.1. Годовой график нагрузок по продолжительности
- •1.2. Режимы работы нейтралей в электроустановках в сетях 6, 10, 35 кВ
- •Силовой трансформатор
- •Компоненты трансформатора Выводы трансформатора
- •Охладители
- •Оборудование для регулирования напряжения
- •Навесное оборудование Газовое реле
- •Индикация температуры
- •Встроенные трансформаторы тока
- •Поглотители влаги
- •Устройства непрерывной регенерации масла
- •Системы защиты масла
- •Указатели уровня масла
- •Устройства сброса давления
- •Устройства защиты от внезапного повышения давления
- •Устройства защиты от повреждений
- •Колеса/полозья для транспортировки
- •Детектор горючих газов
- •Расходомер
- •Габариты трансформаторов
- •Условное обозначение трансформаторов
- •Электродвигатель постоянного тока
- •Содержание
- •История
- •Описание коллекторного дпт
- •Статор (индуктор)
- •Ротор (якорь)
- •Коллектор
- •Принцип работы
- •Две рамки с током в однородном магнитном поле полюсов статора
- •Рамка с током, в неоднородном магнитном поле полюсов статора
- •Две рамки с током, в неоднородном магнитном поле полюсов статора
- •Взаимодействие магнитных полей
- •Классификация
- •Разновидности Коллекторные, с щёточноколлекторным переключателем тока
- •Бесколлекторные, с электронным переключателем тока
- •Другие виды электродвигателей постоянного тока
- •Управление
- •Механическая характеристика
- •Регулировочная характеристика
- •Применение
- •Достоинства и недостатки
- •Двигатели последовательного возбуждения
- •. Способы возбуждения двигателей постоянного тока
- •Двигатель с независимым возбуждением.
- •Двигатель с последовательным возбуждением.
- •Двигатель со смешанным возбуждением.
- •Синхронный двигатель, принцип действия и устройство синхронного двигателя
- •Короткие замыкания
- •Виды коротких замыканий
- •Причины возникновения коротких замыканий
- •Последствия коротких замыканий
- •Цели расчетов коротких замыканий
- •Порядок расчетов коротких замыканий
- •Расчет трехфазного короткого замыкания
- •Назначение релейной защиты.
- •Релейная защита область применения
- •Общие требования
- •Защита турбогенераторов, работающих непосредственно на сборные шины генераторного напряжения
- •Защита трансформаторов (автотрансформаторов) с обмоткой высшего напряжения 3 кВ и выше и шунтирующих реакторов 500 кВ
- •Защита блоков генератор - трансформатор
- •Защита воздушных и кабельных линий в сетях напряжением 3-10 кВ с изолированной нейтралью
- •Защита воздушных и кабельных линий в сетях напряжением 20 и 35 кВ с изолированной нейтралью
- •Защита воздушных линий в сетях напряжением 110-500 кВ с эффективно заземленной нейтралью
- •Защита шин, защита на обходном, шиносоединительном и секционном выключателях
- •Защита синхронных компенсаторов
- •Переменный оперативный ток.
- •Токовые защиты.
- •Назначение релейной защиты
- •1.2. Повреждения в электроустановках
- •1.3. Векторные диаграммы токов и напряжений при кз
- •Измерительный трансформатор
- •Содержание
- •Классификация
- •Трансформаторы напряжения
- •Трансформаторы тока
- •Трансформаторы постоянного тока
- •Основные нормируемые характеристики
- •Часть 3
- •Принцип действия и устройство статического реле рп18
1.2. Режимы работы нейтралей в электроустановках в сетях 6, 10, 35 кВ
В сетях 6, 10, 35 кВ при токах замыкания на землю IC, превышающих допустимые по ПУЭ (гл. 1.2) величины IC доп (см. [1], с. 24), возникает необходимость их компенсации с помощью дугогасящих заземляющих реакторов. Пример 1.2. Выбрать дугогасящий реактор для компенсации емкостного тока сети 10 кВ, присоединенной к шинам подстанции (рисунок 1.4). Емкостный ток кабельной сети, присоединенной к секции К1, - 12 А, к секции К2 - 14 А. Секционный выключатель QK нормально отключен.
Рисунок
1.4. Схема подстанции (к примеру 1.2)
Р
е ш е н и е Согласно требованиям ПУЭ,
компенсация емкостного тока в сети
10 кВ необходима при Iс>20А,
такой режим возникает при включении
секционного выключателя QK(например,
при выводе в ремонт T1
или Т2):
Мощность
реактора определяем по формуле (1.16)
[1]
Выбираем
по таблице П1.2 реактор РУОМ-190/10,
кВ,
который подключается к одной из секций
10,5 кВ через фильтр нулевой последовательности
ФМЗО.
Задача
1.3 (самостоятельно).
Решить вопрос о необходимости компенсации
емкостных токов в сети 35 и 10 кВ (рисунок
1.5), выбрать при необходимости типы
дугогасящих реакторов и места их
установки в схеме. Линии 35 кВ - воздушные
на железобетонных опорах, длина линий:
W4
- 20
км; W5
-
10 км; W6
- 15
км, W7
- 16
км. Линии 10 кВ кабельные, длина линий:
W1
-
7 км; W2
- 12 км;
WЗ
- 9км.
При определении емкостных токов
сети рассмотреть различные режимы
работы секционных выключателей QK1,
QK2,
QK3
(«включено» или «отключено»).
Рисунок
1.5. Схема сети (к задаче 1.3)
Силовой трансформатор
Силовой трансформатор — стационарный прибор с двумя или более обмотками, который посредством электромагнитной индукции преобразует систему переменного напряжения и тока в другую систему переменного напряжения и тока, как правило, различных значений при той же частоте в целях передачи электроэнергии без изменения её передаваемой мощности
Компоненты трансформатора Выводы трансформатора
Подвод питающего напряжения и подключение нагрузки к трансформатору производится с помощью так называемых «выводов». Выводы в сухих трансформаторах могут быть выведены на клеммную колодку в виде болтовых контактов или соединителей с плоскими контактами и могут размещаться как снаружи так и внутри съёмного корпуса. В масляных (или заполненных синтетическими жидкостями) трансформаторах выводы располагаются только снаружи на крышку или на боковые стороны бака, а передача от внутренних обмоток через гибкие соединения (демпферы) на медные или латунные шпильки с нарезанной на них резьбой. Изолирование шпилек от корпуса осуществляется с помощью проходных изоляторов (изготовляемых из специального фарфора или пластмассы), внутри которых проходят шпильки. Уплотнение всех зазоров в выводах осуществляется прокладками из маслобензостойкой резины.
Выводы трансформаторов по конструктивному исполнению подразделяются:
Выводы с главной изоляцией фарфоровой покрышки
Выводы с маслобарьерной изоляцией
Конденсаторные проходные изоляторы
Выводы с бумажно-масляной изоляцией
Выводы с полимерной RIP-изоляцией (с полым изолятором или с прямым литьём изолятора)
Выводы с элегазовой изоляцией