
- •Раздел 2. Конспект лекций по курсу «инженерная механика 1»:
- •Часть 1 «статика» Лекция 1. Тема 1. Предмет «Инженерная механика 1». Введение в статику
- •1.1. Вводные положения по курсу «Инженерная механика». Структура курса «Инженерная механика 1»
- •1.2. Введение в статику. Основные понятия, определения и задачи статики.
- •1.3. Аксиомы статики
- •Глоссарий
- •2.1. Основные виды связей твердых тел и их реакции.
- •И цилиндрический шарнир (шнпо)
- •Или шарнирно-подвижной опоры (шпо) тела 1 с «землей»
- •2.2. Наиболее употребляемые схемы опорных закреплений стержневых элементов плоских конструкций.
- •3.1. Момент силы относительно точки.
- •3.2. Момент силы относительно оси
- •Осей координат
- •3.3. Элементарная теория пар сил
- •Лекция 4. Тема 4. Основные теоремы и методы статики. Условия равновесия произвольной системы сил
- •4.1. Метод Пуансо (о параллельном переносе силы)
- •Б) добавление уравновешенной системы сил; в) эквивалентная система
- •4.2. Теорема Вариньона о моменте равнодействующей системы сходящихся сил
- •Сходящихся сил
- •4.3. Приведение системы сил к заданному центру
- •А) исходная система сил; б) после переноса силовых факторов в точку о; в) эквивалентная система с главным вектором и главным моментом
- •4.4. Общее и аналитические условия равновесия произвольной системы сил (плоской и пространственной)
- •Часть 2 «Сопротивление материалов»
- •5.1. Общие вводные положения курса «Сопротивление материалов», значение его изучения для технических специалистов (инженеров), основные термины и определения
- •5.2. Общая классификация элементов конструкций.
- •5.3. Классификация внешних нагрузок, действующих на элементы конструкций.
- •6.1. Внутренние усилия в стержнях при центральном растяжении-сжатии, применение метода сечений.
- •6.2. Эпюры внутренних усилий при центральном растяжении-сжатии стержней.
- •6.3. Деформации, закон Гука при центральном растяжении-сжатии стержней
- •6.4. Механические характеристики сопротивления материалов при центральном растяжении и сжатии
- •1) Общие положения
- •2) Диаграммы растяжения упруго-пластических материалов
- •При однократном нагружении до разрушения а); при повторном нагружении после разгрузки от напряжения σ4 б)
- •3) Диаграммы растяжения хрупких материалов
- •Сжатия древесины
- •4) Диаграммы сжатия материалов
- •5) Диаграммы сжатия древесины
- •6.5. Выбор основных допускаемых напряжений (расчетных сопротивлений) для расчетов на прочность стержней
- •6.6. Условия статической прочности стержней при центральном растяжении и сжатии
- •6.7. Условия жесткости стержней при центральном растяжении и сжатии
- •6.8. Понятие о статически неопределимых системах и методах их расчетов
- •Б) эквивалентная схема с освобождением от опорных связей
- •6.9. Основы теории напряженного состояния. Внутренние усилия и напряжения в косых сечениях при одноосном растяжении-сжатии стержней
- •6.10. Главные площадки и главные напряжения, экстремальные касательные напряжения
- •6.11. Закон парности (взаимности) касательных напряжений.
- •6.12. Двухосное (плоское) напряженное состояние
- •Б) с ориентацией в координатах главных осей 1-2; в) с дополнительным косым сечением под углом α
- •6.13. Понятие о трехосном (объемном) напряженном состоянии
- •Положение площадок; б) положение главных площадок
- •6.14. Обобщенный закон Гука
- •Лекция 10. Тема 7. «Геометрические характеристики поперечных сечений элементов конструкций»
- •7.1. Площади поперечных сечений элементов конструкций
- •И моментов инерции площадей фигур б)
- •7.2. Статические моменты площади. Определение центра тяжести
- •Расчленяющейся на два прямоугольника с площадями а1 и а2
- •7.3. Моменты инерции площадей плоских фигур (поперечных сечений элементов конструкций)
- •7.4. Формулы преобразования моментов инерции при параллельном переносе осей.
- •Относительно параллельно смещенных осей
- •7.5. Значения моментов инерции некоторых простейших фигур относительно различных осей.
- •Центральных осей ху и параллельно смещенных осей х1у1
- •7.6. Главные оси и главные моменты инерции площадей плоских фигур.
- •7.7. Понятия о радиусах инерции плоских фигур.
- •Лекция 11. Тема 8. «Плоский изгиб статически определимых стержней (балок)»
- •8.1. Общие положения об изгибаемых стержнях (балках), сущность деформации плоского изгиба.
- •Эпюра q 20
- •8.2. Применение метода сечений для определения всф и построения эпюр всф для балок, правило знаков.
- •Лекция 12. Тема 8. «Плоский изгиб статически определимых стержней (балок)»
- •8.3. Нормальные напряжения в поперечных сечениях стержней (балок) при изгибе
- •8.4. Касательные напряжения в поперечных сечениях стержней (балок) при изгибе
- •Лекция 13. Тема 8. «Плоский изгиб статически определимых стержней (балок)»
- •8.5. Основное условие статической прочности изгибаемых стержней
- •8.6. Дополнительные проверочные условия статической прочности изгибаемых стержней
- •Лекция 14. Тема 8. «Плоский изгиб статически определимых стержней (балок)»
- •8.7. Перемещения сечений при деформациях изгибаемых стержней
- •8.8. Условия жесткости изгибаемых стержней
- •Лекция 15. Тема 9. «Устойчивость центрально сжатых стержней»
- •8.9. Определение критической силы центрально сжатого стержня при упругой потере устойчивости
- •8.10. Определение критической силы центрально сжатого стержня при неупругой потере устойчивости
- •8.11. Условие устойчивости центрально сжатого стержня
3.1. Момент силы относительно точки.
Общее (векторное)
определение момента силы: момент силы
относительно
точки (центра О) равен векторному
произведению радиус-вектора
,
проведенного из центра О в точку
приложения силы, на саму силу (см. рисунок
13,а):
.
(3)
Точку О, относительно которой определяется момент силы, называют центром момента.
тело тело
h
O
О h – плечо силы
а) б)
Рисунок 13. К определению момента силы как вектора а) и алгебраического момента силы б)
Вектор момента
силы
направлен перпендикулярно плоскости,
в которой лежат центр О и сила
(см. заштрихованный треугольник на
рисунке 13,а), в ту сторону, откуда сила
видна стремящейся повернуть тело
вокруг центра О против хода часовой
стрелки.
Модуль вектора
момента силы
равен произведению модуля силы F
на ее плечо h (т. е.
длину перпендикуляра, проведенного из
центра О на линию действия силы
):
.
(4)
Базовой (основной) единицей измерения величины момента силы является ньютон-метр (Н·м). Часто применяется также единица измерения килоньютон-метр (кН·м).
В частном случае плоской системы сил момент силы считается алгебраической величиной. Алгебраическим моментом силы (или просто моментом силы) (см. рисунок 13,б) относительно точки (центра О) называют меру механического воздействия на твердое тело, учитывающую положение силы по отношению к точке, и выражающуюся произведением модуля силы на плечо, взятым со знаком плюс или минус. Точку (О на рис. 13,б), относительно которой определяется момент силы, называют центром момента.
Перпендикуляр h, опущенный из центра момента на линию действия силы, является плечом силы. Знак момента силы определяется по следующему правилу: момент считается положительным, если сила стремится повернуть тело вокруг центра против хода часовой стрелки и отрицательным – если по ходу часовой стрелки:
,
(5)
где О – центр момента (точка О);
– алгебраическое
значение момента силы относительно
точки О (Н·м);
F – величина силы (Н);
h – плечо силы относительно точки О (м).
Отметим следующие свойства момента силы относительно некоторого центра:
- момент силы относительно точки не изменяется при переносе силы вдоль ее линии действия, так как при этом не меняется плечо силы;
- момент силы относительно точки равен нулю, когда линия действия силы проходит через эту точку (плечо силы равно нулю) или сама сила равна нулю.