- •Раздел 2. Конспект лекций по курсу «инженерная механика 1»:
- •Часть 1 «статика» Лекция 1. Тема 1. Предмет «Инженерная механика 1». Введение в статику
- •1.1. Вводные положения по курсу «Инженерная механика». Структура курса «Инженерная механика 1»
- •1.2. Введение в статику. Основные понятия, определения и задачи статики.
- •1.3. Аксиомы статики
- •Глоссарий
- •2.1. Основные виды связей твердых тел и их реакции.
- •И цилиндрический шарнир (шнпо)
- •Или шарнирно-подвижной опоры (шпо) тела 1 с «землей»
- •2.2. Наиболее употребляемые схемы опорных закреплений стержневых элементов плоских конструкций.
- •3.1. Момент силы относительно точки.
- •3.2. Момент силы относительно оси
- •Осей координат
- •3.3. Элементарная теория пар сил
- •Лекция 4. Тема 4. Основные теоремы и методы статики. Условия равновесия произвольной системы сил
- •4.1. Метод Пуансо (о параллельном переносе силы)
- •Б) добавление уравновешенной системы сил; в) эквивалентная система
- •4.2. Теорема Вариньона о моменте равнодействующей системы сходящихся сил
- •Сходящихся сил
- •4.3. Приведение системы сил к заданному центру
- •А) исходная система сил; б) после переноса силовых факторов в точку о; в) эквивалентная система с главным вектором и главным моментом
- •4.4. Общее и аналитические условия равновесия произвольной системы сил (плоской и пространственной)
- •Часть 2 «Сопротивление материалов»
- •5.1. Общие вводные положения курса «Сопротивление материалов», значение его изучения для технических специалистов (инженеров), основные термины и определения
- •5.2. Общая классификация элементов конструкций.
- •5.3. Классификация внешних нагрузок, действующих на элементы конструкций.
- •6.1. Внутренние усилия в стержнях при центральном растяжении-сжатии, применение метода сечений.
- •6.2. Эпюры внутренних усилий при центральном растяжении-сжатии стержней.
- •6.3. Деформации, закон Гука при центральном растяжении-сжатии стержней
- •6.4. Механические характеристики сопротивления материалов при центральном растяжении и сжатии
- •1) Общие положения
- •2) Диаграммы растяжения упруго-пластических материалов
- •При однократном нагружении до разрушения а); при повторном нагружении после разгрузки от напряжения σ4 б)
- •3) Диаграммы растяжения хрупких материалов
- •Сжатия древесины
- •4) Диаграммы сжатия материалов
- •5) Диаграммы сжатия древесины
- •6.5. Выбор основных допускаемых напряжений (расчетных сопротивлений) для расчетов на прочность стержней
- •6.6. Условия статической прочности стержней при центральном растяжении и сжатии
- •6.7. Условия жесткости стержней при центральном растяжении и сжатии
- •6.8. Понятие о статически неопределимых системах и методах их расчетов
- •Б) эквивалентная схема с освобождением от опорных связей
- •6.9. Основы теории напряженного состояния. Внутренние усилия и напряжения в косых сечениях при одноосном растяжении-сжатии стержней
- •6.10. Главные площадки и главные напряжения, экстремальные касательные напряжения
- •6.11. Закон парности (взаимности) касательных напряжений.
- •6.12. Двухосное (плоское) напряженное состояние
- •Б) с ориентацией в координатах главных осей 1-2; в) с дополнительным косым сечением под углом α
- •6.13. Понятие о трехосном (объемном) напряженном состоянии
- •Положение площадок; б) положение главных площадок
- •6.14. Обобщенный закон Гука
- •Лекция 10. Тема 7. «Геометрические характеристики поперечных сечений элементов конструкций»
- •7.1. Площади поперечных сечений элементов конструкций
- •И моментов инерции площадей фигур б)
- •7.2. Статические моменты площади. Определение центра тяжести
- •Расчленяющейся на два прямоугольника с площадями а1 и а2
- •7.3. Моменты инерции площадей плоских фигур (поперечных сечений элементов конструкций)
- •7.4. Формулы преобразования моментов инерции при параллельном переносе осей.
- •Относительно параллельно смещенных осей
- •7.5. Значения моментов инерции некоторых простейших фигур относительно различных осей.
- •Центральных осей ху и параллельно смещенных осей х1у1
- •7.6. Главные оси и главные моменты инерции площадей плоских фигур.
- •7.7. Понятия о радиусах инерции плоских фигур.
- •Лекция 11. Тема 8. «Плоский изгиб статически определимых стержней (балок)»
- •8.1. Общие положения об изгибаемых стержнях (балках), сущность деформации плоского изгиба.
- •Эпюра q 20
- •8.2. Применение метода сечений для определения всф и построения эпюр всф для балок, правило знаков.
- •Лекция 12. Тема 8. «Плоский изгиб статически определимых стержней (балок)»
- •8.3. Нормальные напряжения в поперечных сечениях стержней (балок) при изгибе
- •8.4. Касательные напряжения в поперечных сечениях стержней (балок) при изгибе
- •Лекция 13. Тема 8. «Плоский изгиб статически определимых стержней (балок)»
- •8.5. Основное условие статической прочности изгибаемых стержней
- •8.6. Дополнительные проверочные условия статической прочности изгибаемых стержней
- •Лекция 14. Тема 8. «Плоский изгиб статически определимых стержней (балок)»
- •8.7. Перемещения сечений при деформациях изгибаемых стержней
- •8.8. Условия жесткости изгибаемых стержней
- •Лекция 15. Тема 9. «Устойчивость центрально сжатых стержней»
- •8.9. Определение критической силы центрально сжатого стержня при упругой потере устойчивости
- •8.10. Определение критической силы центрально сжатого стержня при неупругой потере устойчивости
- •8.11. Условие устойчивости центрально сжатого стержня
4.4. Общее и аналитические условия равновесия произвольной системы сил (плоской и пространственной)
Из теоремы о приведении системы сил к силе и паре сил, можно вывести условия равновесия системы сил, действующих на твердое тело. Для равновесия системы сил, приложенных к твердому телу, необходимо и достаточно, чтобы главный вектор системы сил был равен нулю и главный момент системы сил относительно любого центра приведения также был равен нулю, т.е.
.
(10)
Эти условия являются векторными (общими) условиями равновесия для любой системы сил.
Аналитически главный вектор и главный момент системы сил определяются своими проекциями на координатные оси. Поэтому можно записать условия равновесия (6 уравнений) произвольной пространственной системы сил в аналитической форме:
(11)
Условия (аналитические уравнения) равновесия произвольной плоской системы сил (три варианта совокупности уравнений):
1)
основной – классический комплект уравнений;
(12)
2)
точки О, В, С не
должны лежать на одной прямой;
(13)
3)
(14)
ось l
не должна быть перпендикулярна ОВ.
ГЛОССАРИЙ
Күштер жүйесiнiң бас векторы |
Главный вектор системы сил |
Resultant of system of force |
Күштер жүйесінiң бас моменті |
Главный момент системы сил |
Moment of system of force about point |
Күштер жүйесiн берiлген центрге келтiру |
Приведение системы сил к заданному центру |
Reduction of system of force |
Теңдестiрiлген күштер жүйесi |
Уравновешенная система сил |
Balanced system of force |
Күштер жүйесiнiң тепе-теңдiгi |
Равновесие системы сил |
Equilibrium of system of force |
Рекомендуемая литература
1. Тарг С.М. Краткий курс теоретической механики: Учеб для втузов. – М.: Высш. шк., 1986 (и последующие издания). – 416 с. (с. 37…41; с. 44…48 – приведение системы сил к точке, общие условия равновесия сил, решение задач; с. 79…86 – равновесие пространственной системы сил, решение задач).
2. Молотников В.Я. Основы теоретической механики/Серия «Высшее образование». – Ростов н/Д: «Феникс», 2004. – 384 с. (с. 52…56 – теорема о параллельном переносе силы; с. 56…60; с. 64…68 – условия равновесия произвольной системы сил; с. 61…64 – теорема о приведении заданной системы сил к произвольной точке).
Контрольные задания для СРС:
1) получить условия равновесия системы параллельных сил (для плоской системы сил, для пространственной системы сил);
2) выясните, в каком случае центр тяжести тела обязательно совпадает с центром тяжести его объема и когда эти центры могут не совпадать;
3) определите положение центра тяжести произвольного сектора круга, сегмента круга и четверти окружности;
4) с помощью учебников выяснить, почему в варианте 2 совокупности уравнений равновесия произвольной плоской системы сил точки О, В, С не должны лежать на одной прямой?
5) почему в варианте 3 совокупности уравнений равновесия произвольной плоской системы сил ось l не должна быть перпендикулярна ОВ?
