
- •Оглавление
- •Часть I. Теоретические основы акустики 8
- •Глава 1. Немного истории 8
- •Глава 3. Ультразвук и его свойства 66
- •Часть II. Ультразвуковая аппаратура 115
- •Глава 1. Введение в ультразвуковую аппаратуру 115
- •Глава 2. Схемы и характеристики аппаратуры 136
- •Глава 3. Алгоритм обработки изображений при уз-диагностике 188
- •Часть III. Применение ультразвука 218
- •Глава 1. Применение ультразвука в промышленности 218
- •Глава 2. Применение ультразвука в медицине 246
- •Глава 3. Применение ультразвука в фармации 263
- •Вступление
- •Часть I. Теоретические основы акустики Глава 1. Немного истории
- •1.1. Открытия в области звуковых колебаний
- •1.2. Рождение ультразвука
- •Глава 2. Волны и колебания
- •2.1. Колебания
- •2.1.1. Периодическое движение
- •2.1.2. Свободные колебания
- •2.1.3. Маятник; кинематика его колебаний
- •2.1.4. Гармоническое колебание. Частота
- •2.1.5. Динамика гармонических колебаний
- •2.1.6. Период
- •2.1.7. Сдвиг фаз
- •2.1.8. Вынужденные колебания
- •2.1.9. Резонанс
- •2.2. Волны
- •2.2.1. Поперечные волны в шнуре
- •2.2.2. Продольные волны в столбе воздуха
- •2.2.3. Звуковые колебания
- •2.2.4. Музыкальный тон. Громкость и высота тона
- •2.2.5. Акустический резонанс
- •2.2.6. Шумы
- •2.2.7. Волны на поверхности жидкости
- •2.2.8. Скорость распространения волн
- •2.2.9. Радиолокация, гидроакустическая локация и звукометрия
- •2.2.10. Отражение волн
- •2.2.11. Отражение плоских волн
- •2.2.12. Перенос энергии волнами
- •2.3. Звук и его характеристики
- •2.3.1 Звуковые колебания
- •2.3.2. Высота звука
- •2.3.3. Громкость звука
- •2.3.4. Тембр звука
- •2.3.5. Восприятие созвучий
- •2.3.6. Устройство уха. Резонансная теория Гельмгольца
- •Глава 3. Ультразвук и его свойства
- •3.1. Что такое ультразвук
- •3.1.1 Характеристика ультразвука
- •3.1.2. Ультразвук как упругие волны
- •3.1.3. Специфические особенности ультразвука
- •3.2. Скорость звука
- •3.2.1. Измерение скорости звука
- •3.2.2. Дисперсия
- •3.2.3. Эффект Доплера в акустике
- •3.3. Ослабление звука с расстоянием
- •3.3.1. Ослабление звука для сферических волн
- •3.3.2. Поглощение звука
- •3.3.3. Коэффициент поглощения звука
- •3.3.4. Коэффициент поглощения ультразвука в воздухе.
- •3.3.5. Молекулярное поглощение и дисперсия ультразвука
- •3.3.6. Физический механизм молекулярного поглощения
- •3.4. Дифракция и интерференция
- •3.4.1. Понятие Дифракции
- •3.4.2. Интерференция звука
- •3.4.3. Акустооптическая дифракция
- •3.4.4. Дифракция света на ультразвуке в анизотропной среде
- •3.4.5. Применение на практике акустооптической дифракции
- •Часть II. Ультразвуковая аппаратура Глава 1. Введение в ультразвуковую аппаратуру
- •1.1. Обзор мировой ситуации
- •1.2. Действующие факторы и особенности ультразвукового воздействия
- •1.3. Общие требования к ультразвуковым аппаратам
- •Глава 2. Схемы и характеристики аппаратуры
- •2.1. Ультразвуковые колебательные системы
- •2.1.1. Общая характеристика
- •2.1.2. Ультразвуковые преобразователи
- •2.1.3. Согласование преобразователей со средой
- •2.1.4. Конструкция колебательной системы
- •2.1.5. Рабочие инструменты, соединения и опоры
- •2.2. Генераторы ультразвуковых колебаний
- •2.2.1. Общая характеристика
- •2.2.2. Ультразвуковые генераторы с независимым возбуждением
- •2.2.3. Генераторы с самовозбуждением
- •2.2.4. Генераторы с автоподстройкой частоты
- •2.3. Конструкции многофункциональных аппаратов
- •2.3.1. Многофункциональный аппарат для индивидульного потребителя
- •2.3.2. Многофункциональный аппарат мощностью 40 вт (миксер "алёна")
- •2.3.3. Многофункциональный ультразвуковой аппарат мощностью 160 вт. (электронный фитомиксер "алёна")
- •2.3.4. Многофункциональный аппарат мощностью 400 вт ("сонатор - 22/04 - 01")
- •Глава 3. Алгоритм обработки изображений при уз-диагностике
- •3.1. Общая характеристика
- •3.1.1. История
- •3.1.2. Биофизика ультразвука
- •3.1.3. Лучевая безопасность ультразвукового исследования
- •3.1.4. Общая схема ультразвукового аппарата.
- •3.2. Методы и алгоритмы обработки изображений
- •3.2.1. Принципы обработки
- •3.2.2. Линейное контрастирование
- •3.2.3. Пороговая обработка
- •3.2.4. Алгоритмы линейной фильтрации изображений
- •3.2.5. Медианный фильтр
- •3.2.6. Выделение контуров
- •3.2.7. Градиентный метод
- •3.2.8. Метод активных контуров
- •3.3. Пример ультразвуковой диагностики
- •3.3.1. Методика ультразвуковой ангиографии печени
- •3.3.2. Техника проведения ультразвуковой ангиографии печени
- •3.3.3. Ультразвуковая картина печени при гепатите
- •3.3.4. Ультразвуковая диагностика острого гепатита
- •3.3.5. Ультразвуковая диагностика хронического гепатита
- •1.1.2. Ультразвуковая обработка молока
- •1.1.3. Интенсификация процессов приготовления сыров
- •1.1.4. Применение ультразвука при приготовлении соков
- •1.1.5. Применение ультразвука в сельском хозяйстве
- •1.1.6. Ультразвуковое снятие заусенцев
- •1.1.7. Ультразвуковая дегазация жидкостей
- •1.1.8. Ультразвуковая мойка и очистка
- •1.2. Применение ультразвуковых многофункциональных аппаратов для обработки твердых тел
- •1.2.1. Общая характеристика
- •1.2.1. Ультразвуковая размерная обработка
- •1.2.2. Соединение порлимерных материалов под действием ультразвука
- •Глава 2. Применение ультразвука в медицине
- •2.1. Диагностика
- •2.1.1. Принципы уз-диагностики
- •2.1.3. Акушерство
- •2.1.4. Офтальмология
- •2.1.5. Исследование внутренних органов
- •2.1.6. Приповерхносные и наружные органы
- •2.1.7. Кардиология
- •2.1.8. Неврология
- •2.1.9. Использование эффекта Доплера в диагностике
- •2.2. Применение ультразвука в терапии и хирургии
- •2.2.1. Принципы применения уз в терапии и хирургии
- •2.2.2. Нагрев
- •2.2.3. Увеличение растяжимости коллагенсодержащих тканей
- •2.2.4. Повышение подвижности суставов
- •2.2.5. Болеутоляющее действие
- •2.2.6. Изменения кровотока
- •2.2.7. Уменьшение мышечного спазма
- •2.2.8. Хирургия с помощью фокусированного ультразвука
- •2.2.9. Ускорение регенерации тканей
- •2.2.10. Лечение трофических язв
- •2.2.11. Ускорение рассасывания отеков
- •2.2.12. Заживление переломов
- •2.2.13. Ультразвук и косметика
- •2.3. Ультразвук в стоматологии
- •2.3.1. История
- •2.3.2. Пародонтология
- •2.3.3. Эндодонтия
- •2.3.4. Хирургия
- •2.3.5. Ультазвуковая терапия
- •2.3.6. Профилактика и гигиена
- •2.3.7. Дезинфекция и очистка
- •Глава 3. Применение ультразвука в фармации
- •3.1. Обработка растворов
- •3.1.1. Ускорение процессов растворения
- •3.1.2. Приготовление эмульсий
- •3.1.3. Ультразвуковая стерилизация жидких сред
- •3.2. Обработка природного сырья
- •3.2.1. Ускорение процессов экстрагирования лекарственного сырья
- •3.2.2. Ультразвуковое диспергирование и приготовление суспензий
- •Заключение
- •Список использованной литературы
2.2. Генераторы ультразвуковых колебаний
2.2.1. Общая характеристика
Для питания ультразвуковых преобразователей колебательных систем используются источники электрической энергии - генераторы, обеспечивающие преобразование энергии промышленной частоты (50 Гц) в энергию электрических колебаний ультразвуковой частоты.
Поскольку резонансная частота колебательной системы может изменяться не только при использовании различных рабочих инструментов, но и при осуществлении различных технологических операций, генераторы для многофункциональных ультразвуковых аппаратов должны выполняться универсальными, т.е. иметь необходимый диапазон изменения параметров выходного сигнала и обеспечивать согласование с различными, и изменяющимися во времени, нагрузками.
Изменение резонансной частоты колебательных систем происходит из-за нагревания пьезокерамических материалов, отражающей и излучающей металлических накладок (нагрев до 100 о С снижает резонансную частоту на 0,5....1 кГц). Изменение акустических свойств обрабатываемых сред может изменять резонансную частоту колебательной системы на 0,5 кГц.
Кроме того, рабочая частота генератора может изменяться из-за температурной нестабильности частотно - задающих элементов электронных схем.
Для компенсации внешних воздействий на параметры колебательных систем и обеспечения возможности использования различных по функциональным назначениям рабочих инструментов, в генератора используются механические регулирующие устройства и системы электронной автоподстройки частоты и стабилизации амплитуды колебаний.
Современные УЗ генераторы выполняются полностью на полупроводниковых электронных компонентах. Это стало возможным в последние годы, в связи с созданием транзисторов, работающих при высоких рабочих межэлектродных напряжениях (более 500 В), рассеивающих большие мощности (более 100 Вт) и имеющих малые времена переключения.
Применение таких транзисторов позволило создать генераторы необходимого мощностного диапазона. Высокие рабочие напряжения современных транзисторов позволили реализовать электрические схемы генераторов с безтрансформаторными источниками питания, что обеспечило многократное снижение габаритных размеров и массы технологических аппаратов.
Использование высокоскоростных мощных транзисторов позволило применить схемы двухтактных выходных каскадов, в которых транзисторы работают в режиме переключения. В этом режиме рабочие точки транзисторов во время основной части периода находятся в областях насыщения и отсечки, обеспечивая минимальную мощность рассеивания в цепи коллекторов и высокий КПД (более 85%).
При использовании режима переключения напряжение на выходе генератора имеет прямоугольную форму. Нечетные гармоники имеют значительный вес и приводят к дополнительным потерям в транзисторах и колебательной системе.
Для исключения влияния высших гармоник, согласование генератора с колебательной системой осуществляется с помощью корректирующих фильтров, которые на основной частоте приводят входное сопротивление нагрузки к активной величине, а на высших гармониках значительно повышают комплексное сопротивление нагрузки.
В качестве корректирующих элементов используются цепи из реактивных элементов. На рис. показана схема включения УЗ колебательной системы с пьезоэлектрическими активными элементами.
Рис. Эквивалентная схема включения колебательной системы
В такой схеме корректирующий фильтр образуется собственной электрической емкостью пьезоэлементов С п и индуктивностью дросселя L. На основной частоте параллельное соединение собственной емкости пьезоэлементов С п и активного сопротивления потерь R совместно с индуктивностью L дросселя обеспечивает резонанс на основной частоте.
Введение корректирующих фильтров обеспечивает косинусоидальную форму токов через транзисторы усилителя мощности, что создает наиболее благоприятные условия для переключения транзисторов и обеспечивает расширение частотного диапазона генераторов.
Все ультразвуковые генераторы выполняются многокаскадными. Каждый каскад усиления генераторов работает в режиме переключения. Для обеспечения наилучших условий работы транзисторы включаются с общим эмиттером. Выходные каскады генераторов выполняются по двухтактным полумостовым схемам, обеспечивающим минимальные искажения усиливаемых сигналов и выходные мощности до 500 Вт.
Генераторы ультразвуковых многофункциональных аппаратов выполняются по схемам с независимым возбуждением, по схемам с самовозбуждением и по схемам с автоподстройкой частоты.