
- •Оглавление
- •Часть I. Теоретические основы акустики 8
- •Глава 1. Немного истории 8
- •Глава 3. Ультразвук и его свойства 66
- •Часть II. Ультразвуковая аппаратура 115
- •Глава 1. Введение в ультразвуковую аппаратуру 115
- •Глава 2. Схемы и характеристики аппаратуры 136
- •Глава 3. Алгоритм обработки изображений при уз-диагностике 188
- •Часть III. Применение ультразвука 218
- •Глава 1. Применение ультразвука в промышленности 218
- •Глава 2. Применение ультразвука в медицине 246
- •Глава 3. Применение ультразвука в фармации 263
- •Вступление
- •Часть I. Теоретические основы акустики Глава 1. Немного истории
- •1.1. Открытия в области звуковых колебаний
- •1.2. Рождение ультразвука
- •Глава 2. Волны и колебания
- •2.1. Колебания
- •2.1.1. Периодическое движение
- •2.1.2. Свободные колебания
- •2.1.3. Маятник; кинематика его колебаний
- •2.1.4. Гармоническое колебание. Частота
- •2.1.5. Динамика гармонических колебаний
- •2.1.6. Период
- •2.1.7. Сдвиг фаз
- •2.1.8. Вынужденные колебания
- •2.1.9. Резонанс
- •2.2. Волны
- •2.2.1. Поперечные волны в шнуре
- •2.2.2. Продольные волны в столбе воздуха
- •2.2.3. Звуковые колебания
- •2.2.4. Музыкальный тон. Громкость и высота тона
- •2.2.5. Акустический резонанс
- •2.2.6. Шумы
- •2.2.7. Волны на поверхности жидкости
- •2.2.8. Скорость распространения волн
- •2.2.9. Радиолокация, гидроакустическая локация и звукометрия
- •2.2.10. Отражение волн
- •2.2.11. Отражение плоских волн
- •2.2.12. Перенос энергии волнами
- •2.3. Звук и его характеристики
- •2.3.1 Звуковые колебания
- •2.3.2. Высота звука
- •2.3.3. Громкость звука
- •2.3.4. Тембр звука
- •2.3.5. Восприятие созвучий
- •2.3.6. Устройство уха. Резонансная теория Гельмгольца
- •Глава 3. Ультразвук и его свойства
- •3.1. Что такое ультразвук
- •3.1.1 Характеристика ультразвука
- •3.1.2. Ультразвук как упругие волны
- •3.1.3. Специфические особенности ультразвука
- •3.2. Скорость звука
- •3.2.1. Измерение скорости звука
- •3.2.2. Дисперсия
- •3.2.3. Эффект Доплера в акустике
- •3.3. Ослабление звука с расстоянием
- •3.3.1. Ослабление звука для сферических волн
- •3.3.2. Поглощение звука
- •3.3.3. Коэффициент поглощения звука
- •3.3.4. Коэффициент поглощения ультразвука в воздухе.
- •3.3.5. Молекулярное поглощение и дисперсия ультразвука
- •3.3.6. Физический механизм молекулярного поглощения
- •3.4. Дифракция и интерференция
- •3.4.1. Понятие Дифракции
- •3.4.2. Интерференция звука
- •3.4.3. Акустооптическая дифракция
- •3.4.4. Дифракция света на ультразвуке в анизотропной среде
- •3.4.5. Применение на практике акустооптической дифракции
- •Часть II. Ультразвуковая аппаратура Глава 1. Введение в ультразвуковую аппаратуру
- •1.1. Обзор мировой ситуации
- •1.2. Действующие факторы и особенности ультразвукового воздействия
- •1.3. Общие требования к ультразвуковым аппаратам
- •Глава 2. Схемы и характеристики аппаратуры
- •2.1. Ультразвуковые колебательные системы
- •2.1.1. Общая характеристика
- •2.1.2. Ультразвуковые преобразователи
- •2.1.3. Согласование преобразователей со средой
- •2.1.4. Конструкция колебательной системы
- •2.1.5. Рабочие инструменты, соединения и опоры
- •2.2. Генераторы ультразвуковых колебаний
- •2.2.1. Общая характеристика
- •2.2.2. Ультразвуковые генераторы с независимым возбуждением
- •2.2.3. Генераторы с самовозбуждением
- •2.2.4. Генераторы с автоподстройкой частоты
- •2.3. Конструкции многофункциональных аппаратов
- •2.3.1. Многофункциональный аппарат для индивидульного потребителя
- •2.3.2. Многофункциональный аппарат мощностью 40 вт (миксер "алёна")
- •2.3.3. Многофункциональный ультразвуковой аппарат мощностью 160 вт. (электронный фитомиксер "алёна")
- •2.3.4. Многофункциональный аппарат мощностью 400 вт ("сонатор - 22/04 - 01")
- •Глава 3. Алгоритм обработки изображений при уз-диагностике
- •3.1. Общая характеристика
- •3.1.1. История
- •3.1.2. Биофизика ультразвука
- •3.1.3. Лучевая безопасность ультразвукового исследования
- •3.1.4. Общая схема ультразвукового аппарата.
- •3.2. Методы и алгоритмы обработки изображений
- •3.2.1. Принципы обработки
- •3.2.2. Линейное контрастирование
- •3.2.3. Пороговая обработка
- •3.2.4. Алгоритмы линейной фильтрации изображений
- •3.2.5. Медианный фильтр
- •3.2.6. Выделение контуров
- •3.2.7. Градиентный метод
- •3.2.8. Метод активных контуров
- •3.3. Пример ультразвуковой диагностики
- •3.3.1. Методика ультразвуковой ангиографии печени
- •3.3.2. Техника проведения ультразвуковой ангиографии печени
- •3.3.3. Ультразвуковая картина печени при гепатите
- •3.3.4. Ультразвуковая диагностика острого гепатита
- •3.3.5. Ультразвуковая диагностика хронического гепатита
- •1.1.2. Ультразвуковая обработка молока
- •1.1.3. Интенсификация процессов приготовления сыров
- •1.1.4. Применение ультразвука при приготовлении соков
- •1.1.5. Применение ультразвука в сельском хозяйстве
- •1.1.6. Ультразвуковое снятие заусенцев
- •1.1.7. Ультразвуковая дегазация жидкостей
- •1.1.8. Ультразвуковая мойка и очистка
- •1.2. Применение ультразвуковых многофункциональных аппаратов для обработки твердых тел
- •1.2.1. Общая характеристика
- •1.2.1. Ультразвуковая размерная обработка
- •1.2.2. Соединение порлимерных материалов под действием ультразвука
- •Глава 2. Применение ультразвука в медицине
- •2.1. Диагностика
- •2.1.1. Принципы уз-диагностики
- •2.1.3. Акушерство
- •2.1.4. Офтальмология
- •2.1.5. Исследование внутренних органов
- •2.1.6. Приповерхносные и наружные органы
- •2.1.7. Кардиология
- •2.1.8. Неврология
- •2.1.9. Использование эффекта Доплера в диагностике
- •2.2. Применение ультразвука в терапии и хирургии
- •2.2.1. Принципы применения уз в терапии и хирургии
- •2.2.2. Нагрев
- •2.2.3. Увеличение растяжимости коллагенсодержащих тканей
- •2.2.4. Повышение подвижности суставов
- •2.2.5. Болеутоляющее действие
- •2.2.6. Изменения кровотока
- •2.2.7. Уменьшение мышечного спазма
- •2.2.8. Хирургия с помощью фокусированного ультразвука
- •2.2.9. Ускорение регенерации тканей
- •2.2.10. Лечение трофических язв
- •2.2.11. Ускорение рассасывания отеков
- •2.2.12. Заживление переломов
- •2.2.13. Ультразвук и косметика
- •2.3. Ультразвук в стоматологии
- •2.3.1. История
- •2.3.2. Пародонтология
- •2.3.3. Эндодонтия
- •2.3.4. Хирургия
- •2.3.5. Ультазвуковая терапия
- •2.3.6. Профилактика и гигиена
- •2.3.7. Дезинфекция и очистка
- •Глава 3. Применение ультразвука в фармации
- •3.1. Обработка растворов
- •3.1.1. Ускорение процессов растворения
- •3.1.2. Приготовление эмульсий
- •3.1.3. Ультразвуковая стерилизация жидких сред
- •3.2. Обработка природного сырья
- •3.2.1. Ускорение процессов экстрагирования лекарственного сырья
- •3.2.2. Ультразвуковое диспергирование и приготовление суспензий
- •Заключение
- •Список использованной литературы
Вступление
Понятие «ультразвук» приобрело в настоящее время более широкий смысл, чем просто обозначение высокочастотной части спектра акустических волн. С ним связаны целые области современной физики, промышленной технологии, информационной и измерительной техники, медицины и биологии.
Хотя первые ультразвуковые исследования были выполнены ещё в позапрошлом веке, основы широкого практического применения ультразвука были заложены позже, в 1-й трети 20 в. Как область науки и техники ультразвук получил особенно бурное развитие в последние три-четыре десятилетия. Это связано с общим прогрессом акустики как науки и, в частности, со становлением и развитием таких её разделов, как нелинейная акустика и квантовая акустика, а также с развитием физики твёрдого тела, электроники и в особенности с рождением квантовой электроники.
Широкое распространение ультразвуковых методов обусловлено появлением новых надёжных средств излучения и приёма акустических волн, с одной стороны, обеспечивших возможность существенного повышения излучаемой ультразвуковой мощности и увеличения чувствительности при приёме слабых сигналов, а с другой — позволивших продвинуть верхнюю границу диапазона излучаемых и принимаемых волн в область гиперзвуковых частот.
Характерной особенностью современного состояния физики и техники ультразвука является чрезвычайное многообразие его применений, охватывающих частотный диапазон от слышимого звука до предельно достижимых высоких частот и область мощностей от долей милливатта до десятков киловатт.
Ультразвук применяется в металлургии для воздействия на расплавленный металл и в микроэлектронике и приборостроении для прецизионной обработки тончайших деталей.
В качестве средства получения информации он служит как для измерения глубины, локации подводных препятствий в океане, так и для обнаружения микродефектов в ответственных деталях и изделиях.
Ультразвуковые методы используются для фиксации малейших изменений химического состава веществ и для определения степени затвердевания бетона в теле плотины.
В области контрольно-измерительных применений ультразвука в самостоятельный, установившийся раздел выделилась ультразвуковая дефектоскопия, возможности которой и разнообразие решаемых ею задач существенно возросли.
В самое последнее время сформировались как самостоятельные области акустоэлектроника и акустооптика. Первая из них связана с обработкой электрических сигналов, использующей преобразование их в ультразвуковые. Из устройств акустоэлектроники наиболее известными и давно используемыми являются линии задержки и фильтры.
Достижения в области изучения поверхностных волн, генерации и приёма гиперзвуковых волн, установление связи упругих волн с элементарными возбуждениями в твёрдом теле привели к существенному расширению возможностей этих устройств и к созданию новых приборов акустоэлектроники, обеспечивающих более сложную обработку сигналов.
Акустооптика, связанная с обработкой световых сигналов посредством ультразвука, является одной из самых молодых и быстро развивающихся областей ультразвуковой техники. К новейшим ультразвуковым методам принадлежит акустическая голография, перспективы которой весьма многообещающи, поскольку она создаёт возможность получения изображений предметов в непрозрачных для световых лучей средах.
Рассматривая многообразие практических применений ультразвуковых колебаний и волн, нельзя не упомянуть об ультразвуковой медицинской диагностике, которая даёт в ряде случаев более детальную информацию и является более безопасной, чем другие методы диагностики. Об ультразвуковой терапии, занявшей прочное положение среди современных физиотерапевтических методов, и, наконец, о новейшем направлении применения ультразвука в медицине — ультразвуковой хирургии.
Наряду с применениями практического характера, ультразвук играет важную роль в научных исследованиях. Нельзя себе представить современную физику твёрдого тела без применения ультразвуковых и гиперзвуковых методов, без понятия о фотонах, их поведении и взаимодействиях с различными полями и возбуждениями в твёрдом теле. В изучении жидкостей и газов широко используются методы молекулярной акустики; всё большую роль играют ультразвуковые методы в биологии.
Интерес к ультразвуку, к ультразвуковой технике всё возрастает, благодаря его проникновению в самые различные области человеческой деятельности. Растёт число публикаций о нём в газетах и журналах, в популярных изданиях. Инженеры и научные работники, занятые в самых различных областях народного хозяйства и науки, оценивают возможности использования ультразвуковых методов для своих конкретных задач и в связи с этим хотят получить представление о различных аспектах физики и техники ультразвука на современном уровне. Однако имеющаяся научно-техническая литература в настоящее время не в состоянии полностью удовлетворить такую потребность. Известные издания общего характера, посвящённые физике и технике ультразвука, зачастую не соответствуют современному состоянию науки. Опубликованные в последние годы специальные монографии научного и прнкладного характера предназначены для подготовленных читателей, обладающих достаточным запасом знаний в области акустики и смежных разделов физики, например, физики твёрдого тела, или в какой-то определенной, связанной с ультразвуком отрасли техники.
В данной работе я попытался обобщить собранные мною данные об ультразвуке, выделить наиболее современные и актуальные.