Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Звук.doc
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
5.33 Mб
Скачать

3.3.3. Коэффициент поглощения звука

Для того чтобы количественно судить о поглощении звука, вводят коэффициент поглощения — величину, показывающую, как убывает амплитуда плоской звуковой волны с расстоянием. Амплитуда волны A0 на расстоянии х уменьшается и становится равной Ах. Это уменьшение, как показывает эксперимент, происходит по так называемому экспоненциальному закону

,

где е = 2,7 — основание натуральных логарифмов.

При

и уменьшение амплитуды .

Таким образом, коэффициент поглощения есть величина, обратная расстоянию х1, на котором амплитуда волны при ее распространении уменьшается в е раз:

Чем больше коэффициент поглощения, тем на меньшем расстоянии убывает амплитуда волны до указанной величины.

Теория поглощения звука, учитывающая только влияние сдвиговой вязкости среды, дает для коэффициента поглощения а такое выражение:

,

где f — частота звука, с — скорость звука, — плотность и — сдвиговая вязкость среды.

Для воздуха при температуре 20°С = 1,2910-3 г/см3, с = 3,43104 см/сек и  = 1,71104 г/смсек. Пользуясь приведенной формулой, можно подсчитать, что

см-1.

Так, например, если f = 1000 гц, то

см-1

и расстояние , на котором амплитуда звуковой волны уменьшается в е раз, т. е. до 37%, будет равно:

км!

Если бы мы учли, кроме вязкости, также и влияние теплопроводности, то тогда

см-1,

и вместо 115 км мы получили бы 80,6 км.

Чтобы определить затухание не амплитуды звука, а его интенсивности, вспомним, что интенсивность звука пропорциональна квадрату амплитуды. Если, например, амплитуда звуковой волны уменьшится в 2 раза, сила звука уменьшится в 4 раза. Поэтому коэффициент поглощения по интенсивности будет в 2 раза больше, чем коэффициент поглощения звука по амплитуде. Для рассмотренного нами примера (f = 1000 гц) расстояние, на котором сила звука уменьшится в воздухе до 37%, будет равно 40,3 км.

Такое малое поглощение звука явно не соответствует действительности: звук распространяется в атмосфере с гораздо большим поглощением; причины этого мы обсудим ниже.

3.3.4. Коэффициент поглощения ультразвука в воздухе.

Приведены кривые коэффициента поглощения звуковых и ультразвуковых волн для комнатного воздуха в зависимости от частоты, полученные в основном при помощи ультразвукового интерферометра со стоячими волнами. Кривые относятся к давлению 760 мм ртутного столба и температуре 26,5°С; комнатный воздух имеет при этом около 0,03% СО2 по объему и такую влажность, что число молекул водяного пара составляет 1,26% от всех остальных молекул воздуха (относительная влажность 37%). На частотах ниже 100 кгц поглощение в воздухе гораздо больше вычисленного теоретически. Более детальные исследования показывают, что это расхождение обусловлено наличием паров воды в воздухе. Но и на частотах, более высоких чем 100 кгц, имеется заметное расхождение теории с опытом (примерно в 1,5 раза); при этих частотах, кроме влияния влажности, играет роль также наличие углекислого газа.

Приведенные данные о поглощении ультразвука в воздухе говорят о том, что передать ультразвук в воздухе на большие расстояния (порядка километра и более невозможно. Действительно, если даже ультразвук, например частоты 50 кгц, распространяется в спокойном воздухе, то его поглощение согласно приведенным данным составит 2 дб/м. Это значит, что при прохождении расстояния, равного 1 м, амплитуда акустического давления, развиваемого волной, убывает в 1,26 раза. Легко подсчитать, что при прохождении расстояния в 50 м затухание будет составлять 100 дб, т. е. амплитуда давления уменьшится в 105 раз; при расстоянии а 100 м поглощение составит уже 200 до — амплитуда давления уменьшится уже в К)10 раз, и т. д. Отсюда видно, что практически никакое увеличение мощности не поможет передавать ультразвук в воздухе даже на сравнительно небольшие расстояния. Ультразвук более высоких частот имеет еще большее затухание, кроме того, в реальных атмосферных условиях большую роль играет, как мы увидим в следующей главе, ряд других факторов, за счет которых происходит затухание ультразвука, вообще говоря, гораздо большее, чем затухание за счет вязкости и теплопроводности воздуха.