
- •Оглавление
- •Часть I. Теоретические основы акустики 8
- •Глава 1. Немного истории 8
- •Глава 3. Ультразвук и его свойства 66
- •Часть II. Ультразвуковая аппаратура 115
- •Глава 1. Введение в ультразвуковую аппаратуру 115
- •Глава 2. Схемы и характеристики аппаратуры 136
- •Глава 3. Алгоритм обработки изображений при уз-диагностике 188
- •Часть III. Применение ультразвука 218
- •Глава 1. Применение ультразвука в промышленности 218
- •Глава 2. Применение ультразвука в медицине 246
- •Глава 3. Применение ультразвука в фармации 263
- •Вступление
- •Часть I. Теоретические основы акустики Глава 1. Немного истории
- •1.1. Открытия в области звуковых колебаний
- •1.2. Рождение ультразвука
- •Глава 2. Волны и колебания
- •2.1. Колебания
- •2.1.1. Периодическое движение
- •2.1.2. Свободные колебания
- •2.1.3. Маятник; кинематика его колебаний
- •2.1.4. Гармоническое колебание. Частота
- •2.1.5. Динамика гармонических колебаний
- •2.1.6. Период
- •2.1.7. Сдвиг фаз
- •2.1.8. Вынужденные колебания
- •2.1.9. Резонанс
- •2.2. Волны
- •2.2.1. Поперечные волны в шнуре
- •2.2.2. Продольные волны в столбе воздуха
- •2.2.3. Звуковые колебания
- •2.2.4. Музыкальный тон. Громкость и высота тона
- •2.2.5. Акустический резонанс
- •2.2.6. Шумы
- •2.2.7. Волны на поверхности жидкости
- •2.2.8. Скорость распространения волн
- •2.2.9. Радиолокация, гидроакустическая локация и звукометрия
- •2.2.10. Отражение волн
- •2.2.11. Отражение плоских волн
- •2.2.12. Перенос энергии волнами
- •2.3. Звук и его характеристики
- •2.3.1 Звуковые колебания
- •2.3.2. Высота звука
- •2.3.3. Громкость звука
- •2.3.4. Тембр звука
- •2.3.5. Восприятие созвучий
- •2.3.6. Устройство уха. Резонансная теория Гельмгольца
- •Глава 3. Ультразвук и его свойства
- •3.1. Что такое ультразвук
- •3.1.1 Характеристика ультразвука
- •3.1.2. Ультразвук как упругие волны
- •3.1.3. Специфические особенности ультразвука
- •3.2. Скорость звука
- •3.2.1. Измерение скорости звука
- •3.2.2. Дисперсия
- •3.2.3. Эффект Доплера в акустике
- •3.3. Ослабление звука с расстоянием
- •3.3.1. Ослабление звука для сферических волн
- •3.3.2. Поглощение звука
- •3.3.3. Коэффициент поглощения звука
- •3.3.4. Коэффициент поглощения ультразвука в воздухе.
- •3.3.5. Молекулярное поглощение и дисперсия ультразвука
- •3.3.6. Физический механизм молекулярного поглощения
- •3.4. Дифракция и интерференция
- •3.4.1. Понятие Дифракции
- •3.4.2. Интерференция звука
- •3.4.3. Акустооптическая дифракция
- •3.4.4. Дифракция света на ультразвуке в анизотропной среде
- •3.4.5. Применение на практике акустооптической дифракции
- •Часть II. Ультразвуковая аппаратура Глава 1. Введение в ультразвуковую аппаратуру
- •1.1. Обзор мировой ситуации
- •1.2. Действующие факторы и особенности ультразвукового воздействия
- •1.3. Общие требования к ультразвуковым аппаратам
- •Глава 2. Схемы и характеристики аппаратуры
- •2.1. Ультразвуковые колебательные системы
- •2.1.1. Общая характеристика
- •2.1.2. Ультразвуковые преобразователи
- •2.1.3. Согласование преобразователей со средой
- •2.1.4. Конструкция колебательной системы
- •2.1.5. Рабочие инструменты, соединения и опоры
- •2.2. Генераторы ультразвуковых колебаний
- •2.2.1. Общая характеристика
- •2.2.2. Ультразвуковые генераторы с независимым возбуждением
- •2.2.3. Генераторы с самовозбуждением
- •2.2.4. Генераторы с автоподстройкой частоты
- •2.3. Конструкции многофункциональных аппаратов
- •2.3.1. Многофункциональный аппарат для индивидульного потребителя
- •2.3.2. Многофункциональный аппарат мощностью 40 вт (миксер "алёна")
- •2.3.3. Многофункциональный ультразвуковой аппарат мощностью 160 вт. (электронный фитомиксер "алёна")
- •2.3.4. Многофункциональный аппарат мощностью 400 вт ("сонатор - 22/04 - 01")
- •Глава 3. Алгоритм обработки изображений при уз-диагностике
- •3.1. Общая характеристика
- •3.1.1. История
- •3.1.2. Биофизика ультразвука
- •3.1.3. Лучевая безопасность ультразвукового исследования
- •3.1.4. Общая схема ультразвукового аппарата.
- •3.2. Методы и алгоритмы обработки изображений
- •3.2.1. Принципы обработки
- •3.2.2. Линейное контрастирование
- •3.2.3. Пороговая обработка
- •3.2.4. Алгоритмы линейной фильтрации изображений
- •3.2.5. Медианный фильтр
- •3.2.6. Выделение контуров
- •3.2.7. Градиентный метод
- •3.2.8. Метод активных контуров
- •3.3. Пример ультразвуковой диагностики
- •3.3.1. Методика ультразвуковой ангиографии печени
- •3.3.2. Техника проведения ультразвуковой ангиографии печени
- •3.3.3. Ультразвуковая картина печени при гепатите
- •3.3.4. Ультразвуковая диагностика острого гепатита
- •3.3.5. Ультразвуковая диагностика хронического гепатита
- •1.1.2. Ультразвуковая обработка молока
- •1.1.3. Интенсификация процессов приготовления сыров
- •1.1.4. Применение ультразвука при приготовлении соков
- •1.1.5. Применение ультразвука в сельском хозяйстве
- •1.1.6. Ультразвуковое снятие заусенцев
- •1.1.7. Ультразвуковая дегазация жидкостей
- •1.1.8. Ультразвуковая мойка и очистка
- •1.2. Применение ультразвуковых многофункциональных аппаратов для обработки твердых тел
- •1.2.1. Общая характеристика
- •1.2.1. Ультразвуковая размерная обработка
- •1.2.2. Соединение порлимерных материалов под действием ультразвука
- •Глава 2. Применение ультразвука в медицине
- •2.1. Диагностика
- •2.1.1. Принципы уз-диагностики
- •2.1.3. Акушерство
- •2.1.4. Офтальмология
- •2.1.5. Исследование внутренних органов
- •2.1.6. Приповерхносные и наружные органы
- •2.1.7. Кардиология
- •2.1.8. Неврология
- •2.1.9. Использование эффекта Доплера в диагностике
- •2.2. Применение ультразвука в терапии и хирургии
- •2.2.1. Принципы применения уз в терапии и хирургии
- •2.2.2. Нагрев
- •2.2.3. Увеличение растяжимости коллагенсодержащих тканей
- •2.2.4. Повышение подвижности суставов
- •2.2.5. Болеутоляющее действие
- •2.2.6. Изменения кровотока
- •2.2.7. Уменьшение мышечного спазма
- •2.2.8. Хирургия с помощью фокусированного ультразвука
- •2.2.9. Ускорение регенерации тканей
- •2.2.10. Лечение трофических язв
- •2.2.11. Ускорение рассасывания отеков
- •2.2.12. Заживление переломов
- •2.2.13. Ультразвук и косметика
- •2.3. Ультразвук в стоматологии
- •2.3.1. История
- •2.3.2. Пародонтология
- •2.3.3. Эндодонтия
- •2.3.4. Хирургия
- •2.3.5. Ультазвуковая терапия
- •2.3.6. Профилактика и гигиена
- •2.3.7. Дезинфекция и очистка
- •Глава 3. Применение ультразвука в фармации
- •3.1. Обработка растворов
- •3.1.1. Ускорение процессов растворения
- •3.1.2. Приготовление эмульсий
- •3.1.3. Ультразвуковая стерилизация жидких сред
- •3.2. Обработка природного сырья
- •3.2.1. Ускорение процессов экстрагирования лекарственного сырья
- •3.2.2. Ультразвуковое диспергирование и приготовление суспензий
- •Заключение
- •Список использованной литературы
2.2.3. Звуковые колебания
Звук обуславливается механическими колебаниями в упругих средах и телах, частоты которых лежат в диапазоне от 16 Гц до 20 кГц и которые способно воспринимать человеческое ухо.
Соответственно этому механическому колебанию с указанными частотами называются звуковыми и акустическими. Неслышимые механические колебания с частотами ниже звукового диапазона называются инфразвуковыми, а с частотами выше звукового диапазона называются ультразвуковыми.
Если звучащее тело, например электрический звонок, поставить под колокол воздушного насоса, то по мере откачивания воздуха звук будет делаться все слабее и слабее и, наконец, совсем прекратится. Передача колебаний от звучащего тела осуществляется через воздух. Отметим, что при своих колебаниях звучащее тело при своих колебаниях попеременно то сжимает воздух, прилегающий к поверхности тела, то, наоборот, создает разрежение в этом слое. Таким образом, распространение звука в воздухе начинается с колебаний плотности воздуха у поверхности колеблющегося тела.
2.2.4. Музыкальный тон. Громкость и высота тона
Звук, который мы слышим тогда, когда источник его совершает гармоническое колебание, называется музыкальным тоном или, коротко, тоном.
Во всяком музыкальном тоне мы можем различить на слух два качества: громкость и высоту.
Простейшие наблюдения убеждают нас в том, что тона какой-либо данной высоты определяется амплитудой колебаний. Звук камертона после удара по нему постепенно затихает. Это происходит вместе с затуханием колебаний, т.е. со спадением их амплитуды. Ударив камертон сильнее, т.е. сообщив колебаниям большую амплитуду, мы услышим более громкий звук, чем при слабом ударе. То же можно наблюдать и со струной и вообще со всяким источником звука.
Если мы возьмем несколько камертонов разного размера, то не представит труда расположить их на слух в порядке возрастания высоты звука. Тем самым они окажутся расположенными и по
размеру: самый большой камертон дает наиболее низкий звук, самый маленький – наиболее высокий звук. Таким образом, высота тона определяется частотой колебаний. Чем выше частота и, следовательно, чем короче период колебаний, тем более высокий звук мы слышим.
2.2.5. Акустический резонанс
Резонансом называется резкое увеличение амплитуды вынужденных колебаний при приближении частоты вынуждающих колебаний к частоте свободных колебаний.
Резонансные явления можно наблюдать на механических колебаниях любой частоты, в частности и на звуковых колебаниях. Пример звукового или акустического резонанса мы имеем в следующие опыте.
Поставим рядом два одинаковых камертона, обратив отверстия ящиков, на которых они укреплены, друг к другу. Ящики нужны потому, что они усиливают звук камертонов. Это происходит вследствие резонанса между камертоном и столбов воздуха, заключенного в ящике; поэтому ящики называются резонаторами или резонансными ящиками.
Ударим один из камертонов и затем приглушим его пальцами. Мы услышим, как звучит второй камертон.
Возьмем два разных камертона, т.е. с различной высотой тона, и повторим опыт. Теперь каждый из камертонов уже не будет откликаться на звук другого камертона.
Нетрудно объяснить этот результат. Колебания одного камертона действует через воздух с некоторой силой на второй камертон, заставляя его совершать его вынужденные колебания. Так как камертона 1 совершает гармоническое колебания, то и сила, действующая на камертон 2, будет меняться по закону гармонического колебания с частотой камертона 1. Если частота силы иная то вынужденные колебания будут настолько слабы, что мы их не услышим.