- •Учебное пособие для выполнения домашних заданий
- •2.2.5. Примеры решения задач
- •1. Основные классы неорганических соединений
- •Гидроксиды
- •NaOh – гидроксид натрия; Fe(oh)3 – гидроксид железа (III).
- •Ион гидроксожелеза(II)
- •Кислоты
- •Гидросульфид ион
- •Сульфид ион
- •2. Взаимодействие веществ
- •2.1. Химическая термодинамика
- •2.1.1. Основные понятия
- •2.1.2. Энергетика химических процессов (термохимические расчеты). Первый закон термодинамики
- •2.1.3. Энтропия. Химическое сродство. Второй закон термодинамики
- •2.1.4. Условия самопроизвольного протекания процессов. Третий закон термодинамики
- •2.1.5. Примеры решения задач
- •2.2. Химическая кинетика
- •2.2.2. Влияние температуры на скорость реакции
- •2.2.3. Химическое равновесие. Константа равновесия
- •Смещение химического равновесия. Принцип Ле Шателье
- •Примеры решения задач
- •Изменить температуру. Т. К реакция получения аммиака экзотермическая (идет с выделением тепла), то температуру надо понизить (по принципу Ле Шателье).
- •3. Растворы и реакции в водных растворах
- •3.1. Концентрации растворов
- •3.1.1. Способы задания концентрации растворов
- •3.1.2. Закон эквивалентов
- •3.1.3. Пример решения задачи
- •3.2. Теория растворов
- •3.2.1. Давление пара растворов
- •3.2.2. Кипение и замерзание растворов
- •3.2.3. Осмос. Осмотическое давление
- •3.2.4. Количественные характеристики растворов электролитов. Закон растворения
- •(В отн. Единицах, если умножить на 100%, то в %).
- •3.2.5. Произведение растворимости. Условие образования осадка
- •3.2.6. Примеры решения задач
- •3.3 Ионное произведение воды и водородный показатель. Гидролиз солей
- •3.3.1. Ионное произведение воды и водородный показатель
- •3.3.2. Гидролиз солей
- •Соли слабого основания и сильной кислоты
- •Слабое основание сильная кислота
- •Соли сильного основания и слабой кислоты
- •Сильное основание слабая кислота
- •Соли слабого основания и слабой кислоты
- •Слабое основание слабая кислота
- •3.3.3. Примеры решения задач
- •3.4. Комплексные соединения
- •3.4.1. Общие понятия о структуре комплексного соединения
- •В молекуле комплексного соединения один из ионов (обычно катион) занимает центральное место и называется комплексообразователем или центральным ионом.
- •Остальные ионы находятся на более далеком расстоянии от комплексообразователя и составляют внешнюю координационную сферу (ион внешней сферы или внешний ион).
- •Номенклатура комплексных соединений
- •(Nh4)2[Pt(oh)2Cl4] – тетра – хлоро, ди – гидроксо платинат (IV) аммония.
- •Примеры решения задач
- •3.5.3. Примеры решения задач
- •I. Для того, чтобы найти частицы, в которые входят атомы, меняющие свою степень окисления, определим степень окисления всех атомов.
- •II. Разделить овр на две полуреакции. Уравнять в полуреакциях сначала частицы, затем заряды.
- •Если число частиц кислорода в полуреакции больше слева – это освобождающиеся частицы. Если частиц кислорода в полуреакции больше справа – это недостающие частицы кислорода. В нашей полуреакции
- •IV. После выполнения химическо-математических операций перенести полученные коэффициенты в исходное уравнение, сделать проверку, и расставить недостающие коэффициенты, если это необходимо.
- •Пример решения задачи
- •Усиление окислительных свойств →
- •Массы или объемы веществ, испытавшие электрохимические превращения на электродах, прямо пропорциональны количеству прошедшего электричества:
- •V(b) – объем газообразного вещества при н.У., претерпевшего электрохимическое превращение на электроде, дм3;
- •4.2.6. Примеры решения задач
- •MgCl2 ∙ 6CaCl.
- •Соединений (при 298 к)
3.2.3. Осмос. Осмотическое давление
Односторонняя
диффузия вещества растворителя через
полупроницаемую мембрану называется
осмосом.
Давление, обеспечивающее такое перемещение
называется осмотическим (
).
Голландский
физико-химик Вант-Гофф показал зависимость
величины осмотического давления от
концентрации и температуры раствора:
Pосм = i · CB · R · T кПа,
где Pосм – осмотическое давление (760 мм. рт. столба = 1 атм. = 101,325 кПа); CB – молярная концентрация (молярность) раствора; R – универсальная газовая постоянная; Т – абсолютная температура (К).
T = t°С + 273 (t° – температура в шкале Цельсия).
3.2.4. Количественные характеристики растворов электролитов. Закон растворения
Все
электролиты в зависимости от степени
диссоциации (
)
делятся на сильные, слабые и электролиты
средней силы. Степень диссоциации
определяется как:
≥ 0,33 для сильных электролитов. К сильным электролитам относятся сильные кислоты (HCl, HClO3, HClO4, HBr, HI, HIO3, H2SO4, HNO3, H2CrO4, H2Cr2O7, HMnO4, H2MnO4), сильные основания (NaOH, KOH, Ca(OH)2, Ba(OH)2, LiOH) и растворы солей.
Диссоциация сильных электролитов характеризуется кажущейся степенью диссоциации:
(В отн. Единицах, если умножить на 100%, то в %).
< 0,02 для слабых электролитов. К слабым электролитам относятся слабые кислоты (HF, HClO, HClO2, HNO2, H2S, H2SO3, H2S2O3, H3PO4, H2CO3, HCN, CH3COOH и др.), слабые основания (NH4OH, Fe(OH)2, Zn(OH)2, Cu(OH)2, Pb(OH)2, Mg(OH)2 и т. д.) и растворы некоторых солей, например HgCl2, Fe(CNS)3.
Электролиты с 0,02 ≤ < 0,33 являются электролитами средней силы. Таких веществ не много. Типичным примером является фтористоводородная (плавиковая) кислота HF.
Кинетическая
константа равновесия процесса диссоциации
слабого электролита называется его
константой диссоциации (
).
– справочная
характеристика вещества слабого
электролита.
Степень диссоциации слабого электролита связана с его константой диссоциации законом разбавления (законом Оствальда):
При ступенчатой диссоциации электролита каждая ступень характеризуется своей константой диссоциации и значением степени диссоциации:
(I
ступень диссоциации)
(II
ступень диссоциации)
Типичная ошибка: поиск и использование закона растворения для сильных электролитов.
3.2.5. Произведение растворимости. Условие образования осадка
Для веществ труднорастворимых электролитов существует количественная мера их растворимости – произведение растворимости (ПР).
ПР – это произведение в насыщенном растворе молярных концентраций ионов, на которые диссоциирует молекула труднорастворимого электролита. Значения произведений растворимости труднорастворимых веществ (при комнатной температуре) приведены в справочных таблицах. Например,
для AgCl Ag+ + Cl─, ПР = [Ag+]Н ∙ [Cl─]Н = 1,78 ∙ 10─10;
для
BiI3
Bi3++
3I─,
ПР =
= 8,1 ∙ 10─19.
Индекс «н» у символа концентрации определяет отношение концентрации к насыщенному раствору. Таким образом для любого труднорастворимого вещества состава AnBm, диссоциирующего по схеме:
,
ПР
=
.
Поскольку
осадок выпадает из пересыщенных
растворов, то условием образования
осадка является превышение произведения
молярных концентраций ионов
труднорастворимого вещества в конкретном
растворе над величиной ПР,
т.е.
> ПР(AnBm)таб.
