Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Виртуальный кабинет конструкции самолетов 12 (В...docx
Скачиваний:
2
Добавлен:
01.05.2025
Размер:
8.39 Mб
Скачать

3.4.2.2. Двухкамерный жидкостно-газовый амортизатор

Параметры амортизатора определяются исходя из расчетной вертикальной скорости Vy и соответствующей ей энергии удара при посадке. Однако большая часть посадок, выполняемых опытными летчиками, происходит со скоростями Vy, значительно меньшими расчетной. В этом случае желательно иметь более мягкий амортизатор, который обеспечит меньшие нагрузки при посадке. С этой целью желательно снижать давление начальной зарядки амортизатора ро. Обычно оно соответствует усилию, равному 0,5 - 0,6 от стояночной нагрузки. Дальнейшее уменьшение ро снижает запас энергоемкости амортизатора на разбеге, когда нагрузка на колеса максимальна и мягкий амортизатор будет сильно обжат. Компромиссное решение можно получить, используя двухкамерный амортизатор.

В таком амортизаторе создается две газовых камеры, заряженных разными начальными давлениями - камера низкого (Н) и камера высокого (В) давления. В начальный момент обжатия амортизатора в работу вступает камера низкого давления, а когда в ней давление станет равным давлению зарядки второй камеры, начинают работать обе камеры совместно. За счет увеличения общего объема сжимаемого газа политропа обжатия становится более пологой. В двухкамерном амортизаторе давление зарядки в первой камере (Н) можно снизить до 0,1 - 0,15 от стояночной нагрузки и получить очень мягкий амортизатор при посадке. Если стояночную нагрузку на разбеге выбрать близкой к нагрузке в точке перелома политропы, то за счет ее малого наклона за точкой перелома можно получить достаточный запас энергоемкости амортизатора на разбеге и пробеге для поглощения ударных нагрузок при наезде на неровности, особенно на большой скорости в конце разбега. Диаграммы работы двухкамерного амортизатора показаны на рисунках, на которых сохранены те же обозначения, что и в предыдущем разделе. На этих диаграммах Рст.взл - обозначена стояночная нагрузка на амортизатор при взлетной массе самолета.

3.4.2.3. Амортизаторы с разгрузочным клапаном

Жидкостно-газовый амортизатор за счет использования на прямом ходе сопротивления жидкости имеет достаточно высокий (до 0.8 - 0.85) коэффициент полноты диаграммы работы, что обеспечивает его высокую энергоемкость при небольшом ходе штока. Эта энергоемкость нужна только при посадке самолета в момент его первого удара о землю. Все остальные режимы движения самолета по земле - пробег, разбег, маневрирование при рулежке - не требуют высокой энергоемкости амортизатора. На этих режимах амортизатор поглощает энергию ударных нагрузок при наезде колесами на неровности аэродрома. Энергия этих ударов невелика, но они сопровождаются резкими, с большой скоростью перемещениями штока амортизатора, что при высоком коэффициенте полноты диаграммы работы и при больших скоростях движения самолета приводит к большим пиковым нагрузкам, передаваемым на шасси и самолет. Для снижения этих нагрузок желательно иметь мягкий, пусть даже с меньшей энергоемкостью и с меньшим коэффициентом полноты диаграммы работы, амортизатор. Этого можно добиться уменьшением или даже полным устранением сопротивления жидкости при работе амортизатора на указанных выше режимах движения самолета. Такое превращение жесткого жидкостно-газового амортизатора в мягкий чисто газовый обеспечивается включением в его конструкцию специального разгрузочного клапана, который при первом ударе самолета о землю уменьшает площадь проходных отверстий для жидкости, а при движении самолета по земле при стояночном обжатии амортизатора клапан открывает дополнительные каналы перетекания жидкости, что превращает амортизатор в газовый. Уменьшение ударных пиковых нагрузок при движении самолета, особенно на разбеге и пробеге, благоприятно сказывается на ресурсе шасси и других агрегатов самолета.