
- •Метод проецирования
- •Центральная проекция
- •2. Параллельная проекция
- •Глава 2. Точка, прямая, плоскость
- •2.1. Ортогональные проекции точки
- •2.1.1. Безосный эпюр
- •Б) на две плоскости проекции; в) безосный
- •2.2. Ортогональные проекции прямой
- •2.2.1. Прямые частного положения
- •2.2.2. Прямая общего положения
- •2.2.3 Определение натуральной величины отрезка прямой и углов его наклона к плоскостям проекций
- •Наклона: а) в диметрии; б) на эпюре
- •2.2.4. Следы прямой линии
- •2.3. Взаимное положение прямых линий
- •А) параллельные; б) пересекающиеся; в) скрещивающиеся
- •2.3.1. Конкурирующие точки
- •2.4. Проекции плоских углов
- •2.4.1. Теорема о проекциях прямого угла
- •А) на фронтальной плоскости проекции; б) на горизонтальной плоскости проекции
- •2.5. Ортогональные проекции плоскости
- •А) в диметрии; б) на эпюре
- •2.5.1. Прямая и точка в плоскости
- •А) заданной прямоугольником; б) заданной следом
- •2.5.2. Особые линии плоскости
- •2.5.3. Плоскости общего положения
- •2.5.4. Плоскости частного положения
- •А) в диметрии; б) на эпюре
- •Глава 3. Относительное положение прямой и плоскости, двух плоскостей
- •3.1. Пересечение прямой общего положения с проецирующей
- •А) в диметрии; б) на эпюре
- •3.2. Линия пересечения проецирующей плоскости с
- •3.3. Пересечение плоскости с прямой общего положения
- •3.4 Взаимное пересечение плоскостей общего положения
- •3.5. Прямая, параллельная плоскости
- •3.6. Параллельные плоскости
- •3.7. Прямая, перпендикулярная плоскости
- •3.8. Взаимно перпендикулярные плоскости
- •Глава 4. Способы преобразования чертежа
- •4.1. Способ замены плоскостей проекций
- •Преобразование чертежа точки и прямой
- •А) и угла α; б) и угла β
- •Преобразование чертежа плоскости
- •Плоскости в плоскость уровня
- •Способ вращения
- •В плоскость уровня
- •Вращение вокруг оси, перпендикулярной к плоскости
- •4.2.2. Вращение без указания осей на чертеже –
- •Способом плоскопараллельного перемещения
- •4.2.3. Способ вращения вокруг линии уровня
- •5.1. Общие положения
- •Г) призма усеченная
- •Грани вcc’в’
- •Грани авв’а’
- •Грани sвс
- •5.2. Пересечение многогранников плоскостью
- •Положения и определение натуральной величины сечения
- •5.3. Пересечение многогранников с прямой линией
- •С пирамидой
- •5.4. Взаимное пересечение многогранников
- •5.5. Развертки многогранников
- •Усеченной призмы
- •Глава 6. Кривые линии
- •6.1. Основные определения и проекции кривых
- •6.2. Пространственные кривые
- •Глава 7. Кривые поверхности
- •7.1. Общие сведения
- •7.2. Поверхности вращения
- •7.3. Пересечение поверхности вращения плоскостью
- •7.3.1. Цилиндр. Возможные сечения
- •7.3.2. Конус. Возможные сечения
- •7.3.3. Пересечение поверхности вращения с плоскостью
- •Положения заданной прямыми линиями ав и вс
- •7.4. Пересечение поверхности вращения с прямой линией
- •7.5. Взаимное пересечение поверхностей
- •7.5.1. Способ вспомогательных секущих плоскостей
- •7.5.2. Способ вспомогательных сферических поверхностей
- •7.6. Развертка поверхности вращения
- •7.7. Развертываемые и косые поверхности
- •7.7.1. Линейчатые развертываемые поверхности.
- •Заключение
- •Список литературы
- •Введение 3 Глава 1. Метод проецирования 3
- •1.1 Центральная проекция 3
- •Глава 2. Точка, прямая, плоскость 12
- •Глава 3. Относительное положение прямой и
- •Глава 4. Способы преобразования чертежа 37
- •4.1.1 Преобразование чертежа точки и прямой 37
- •Глава 5. Многогранники 49
- •Глава 6. Кривые линии 59
- •Глава 7. Кривые поверхности 63
- •Заключение 91
3.3. Пересечение плоскости с прямой общего положения
Чтобы найти точку пересечения прямой общего положения АВ с плоскостью общего положения Q, нужно:
1) через прямую провести вспомогательную плоскость Р (посредник) частного положения;
2) построить линию пересечения (1-2) вспомогательной плоскости Р с заданной;
3) найти точку (I) пересечения заданной прямой с линией пересечения плоскостей (Рис.3.3).
Задача: Найти точку пересечения прямой FE с плоскостью, заданной треугольником ABC (Рис.3.4).
Рис. 3.3. Пересечение прямой линии с плоскостью
Рис. 3.4. Пресечение прямой линии с плоскостью на эпюре
Решение.
1. Проводим через прямую EF фронтально проецирующую плоскость Р (след Рv);
2. Находим линию пересечения заданной и вспомогательной плоскостей (1-2);
3. В пересечении горизонтальных проекций прямых FE (FнEн) и 1-2 (1н 2н) находим горизонтальную проекцию точки пересечения прямой с плоскостью (Iн). Точка Iv строится по линии связи.
Видимость прямой и плоскости определяется по конкурирующим точкам (Рис.2.10а, б).
3.4 Взаимное пересечение плоскостей общего положения
Рассмотрим пример, в котором плоскости заданы треугольником и параллелограммом (Рис. 3.5). Требуется построить линию пересечения этих фигур. Для построения искомой линии достаточно найти две точки, в которых стороны одной фигуры пересекают плоскость другой фигуры. Поэтому возьмем одну из сторон параллелограмма, например, EF, и найдем точку пересечения ее с плоскостью треугольника. Для построения точки I, в которой прямая EF пересекает плоскость треугольника, проведем через EF горизонтально-проецирующую плоскость Р (след Рн), находим проекции 1н, 2н и 1v, 2v линии пересечения проведенной вспомогательной плоскости Р с треугольником. В пересечении прямых 1v 2v и EvFv находим Iv и затем Iн, т.е. искомую точку. Таким же образом, посредством вспомогательной плоскости R, найдена точка II, в которой сторона параллелограмма DK пересекается с плоскостью треугольника. Остается соединить одноименные проекции найденных точек I и II.
Рис. 3.5. Взаимное пересечение плоскостей
Видимость плоских фигур определяется с помощью конкурирующих точек.
При помощи плоскостей – посредников можно найти общие точки, принадлежащие двум пересекающимся плоскостям, не имеющих общих точек на чертеже (Рис.3.6). Вводим горизонтальную плоскость – посредник Р (след Pv). Эта плоскость пересекает заданные плоскости по линиям уровня (горизонталям 1-2 и 3-4), в пересечении которых и лежит общая для всех трех плоскостей искомая точка I (проекции Iv и Iн). Для определения второй общей точки (II) проводится вспомогательная плоскость S.
Рис 3.6. Построение линии пересечения двух плоскостей, не имеющих общих точек
3.5. Прямая, параллельная плоскости
Прямая параллельна плоскости, если она параллельна прямой, лежащей в плоскости.
Задача: Через точку А провести одну из возможных прямых, параллельных заданной плоскости (Рис.3.7).
Решение.
Чтобы построить прямую, параллельную заданной плоскости, следует взять в плоскости какую-либо прямую (например, D1) и параллельно ей через точку А провести искомую прямую. Можно также провести прямую, параллельную одной из сторон треугольника.
Рис. 3.7. Прямая параллельная плоскости