Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
rjycgtrn.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
879.75 Кб
Скачать

5.1. Общие положения

Многогранником называют геометрическое тело, ограниченное плоскими многоугольниками. Эти многоугольники называют гранями общие стороны смежных многоугольников – ребрами, вершины многогранных углов, образованных его гранями, сходящимися в одной точке - вершинами многогранника.

Совокупность вершин и соединяющих их ребер называют сеткой многогранника.

Рассмотрим только выпуклые многогранники, то есть такие, все грани которых лежат по одну сторону от каждой его грани.

Из всех многогранников наибольший практический интерес представляют призмы, пирамиды и правильные многогранники.

Многогранник, две грани которого n–угольники, лежащие в параллельных плоскостях, а остальные грани параллелограммы, называется n–угольной призмой.

Призма, боковые ребра которой перпендикулярны плоскостям оснований, называется прямой призмой.

Если боковые ребра призмы не перпендикулярны плоскостям оснований, то она называется наклонной призмой.

Многогранник, одна из граней которого произвольный многоугольник, а остальные грани треугольники имеющие общую вершину, называется пирамидой (рис.5.1б).

Если основание пирамиды правильный многоугольник и вершина пирамиды лежит на перпендикуляре восстановленном из центра этого многоугольника, то она называется правильной пирамидой (рис.5.1б).

К правильным многогранникам относятся те, грани которых представляют собой равные и правильные многоугольники, например: гексаэдр (куб) – правильный шестигранник (рис.5.1а), тетраэдр – правильная треугольная пирамида (рис.5.1в), октаэдр – правильный восьмигранник, додекаэдр – правильный двенадцатигранник, икосаэдр – правильный двадцатигранник.

Правильный четырехгранник, или тетраэдр (рис.5.1в), состоит из четырех равносторонних и равных треугольников. Они соединены по три около каждой вершины. Тетраэдр представляет собой частный случай пирамиды. Правильный шестигранник (куб), или гексаэдр, состоит из шести равных квадратов, соединенных по три у каждой вершины.

На комплексном чертеже построение многогранников сводится к построению его сетки (проекций его вершин и ребер). Из многогранников наибольший практический интерес представляют призмы, пирамиды и правильные многогранники.

Рис. 5.1 – Многогранники: а) куб; б) пирамида; в) тетраэдр;

Г) призма усеченная

На рисунке 5.2 представлен комплексный чертеж прямой треугольной усеченной призмы. При построении проекций точек, лежащих на гранях призмы, необходимо выполнять условие принадлежности точки плоскости. Если задана фронтальная проекция точки К(КV), то горизонтальная ее проекция (КН) будет лежать на следе проецирующей грани ВСС¢В¢.

Рис. 5.2. Построение проекций точки К принадлежащей

Грани вcc’в’

Рассмотрим комплексный чертеж треугольной призмы, ребра которой произвольно наклонены к плоскостям проекций Н и V (рис. 5.3).

Рис. 5.3. Построение проекций точки К принадлежащей

Грани авв’а’

Требуется построить горизонтальную проекцию (КН) точки К по известной ее фронтальной проекции (КV), при условии, что точка К принадлежит грани АВВ¢А¢. Выбираем в грани АВВ¢А¢ любую из прямых, проходящую через данную точку К. Такой прямой может быть прямая 12 произвольного положения, пересекающая ребра АА¢ и ВВ¢ или прямая (КЗ), параллельная боковым ребрам и пересекающая ребро АВ в точке 3. Фронтальные проекции (1V2V) и (КVЗV) прямых 12 и КЗ проходят через фронтальную проекцию (КV) искомой точки. Горизонтальные проекции (1Н2Н) и (КНЗН) определяются по условию принадлежности прямых данной грани АВВ¢А¢. На пересечении линии связи с горизонтальной проекцией одной из вспомогательных прямых и будет горизонтальная проекция КН точки К.

На комплексном чертеже треугольной пирамиды SАВС рисунок 5.4 требуется построить фронтальную проекцию (КV) точки К, принадлежащей грани SBC по заданной ее горизонтальной проекции КН. Ход построения при помощи вспомогательных прямых линий (первый вариант с помощью прямой S2, второй вариант с помощью прямой К1//ВС) показан на чертеже стрелками.

Рис. 5.4. Построение проекций точки К принадлежащей

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]