
- •Метод проецирования
- •Центральная проекция
- •2. Параллельная проекция
- •Глава 2. Точка, прямая, плоскость
- •2.1. Ортогональные проекции точки
- •2.1.1. Безосный эпюр
- •Б) на две плоскости проекции; в) безосный
- •2.2. Ортогональные проекции прямой
- •2.2.1. Прямые частного положения
- •2.2.2. Прямая общего положения
- •2.2.3 Определение натуральной величины отрезка прямой и углов его наклона к плоскостям проекций
- •Наклона: а) в диметрии; б) на эпюре
- •2.2.4. Следы прямой линии
- •2.3. Взаимное положение прямых линий
- •А) параллельные; б) пересекающиеся; в) скрещивающиеся
- •2.3.1. Конкурирующие точки
- •2.4. Проекции плоских углов
- •2.4.1. Теорема о проекциях прямого угла
- •А) на фронтальной плоскости проекции; б) на горизонтальной плоскости проекции
- •2.5. Ортогональные проекции плоскости
- •А) в диметрии; б) на эпюре
- •2.5.1. Прямая и точка в плоскости
- •А) заданной прямоугольником; б) заданной следом
- •2.5.2. Особые линии плоскости
- •2.5.3. Плоскости общего положения
- •2.5.4. Плоскости частного положения
- •А) в диметрии; б) на эпюре
- •Глава 3. Относительное положение прямой и плоскости, двух плоскостей
- •3.1. Пересечение прямой общего положения с проецирующей
- •А) в диметрии; б) на эпюре
- •3.2. Линия пересечения проецирующей плоскости с
- •3.3. Пересечение плоскости с прямой общего положения
- •3.4 Взаимное пересечение плоскостей общего положения
- •3.5. Прямая, параллельная плоскости
- •3.6. Параллельные плоскости
- •3.7. Прямая, перпендикулярная плоскости
- •3.8. Взаимно перпендикулярные плоскости
- •Глава 4. Способы преобразования чертежа
- •4.1. Способ замены плоскостей проекций
- •Преобразование чертежа точки и прямой
- •А) и угла α; б) и угла β
- •Преобразование чертежа плоскости
- •Плоскости в плоскость уровня
- •Способ вращения
- •В плоскость уровня
- •Вращение вокруг оси, перпендикулярной к плоскости
- •4.2.2. Вращение без указания осей на чертеже –
- •Способом плоскопараллельного перемещения
- •4.2.3. Способ вращения вокруг линии уровня
- •5.1. Общие положения
- •Г) призма усеченная
- •Грани вcc’в’
- •Грани авв’а’
- •Грани sвс
- •5.2. Пересечение многогранников плоскостью
- •Положения и определение натуральной величины сечения
- •5.3. Пересечение многогранников с прямой линией
- •С пирамидой
- •5.4. Взаимное пересечение многогранников
- •5.5. Развертки многогранников
- •Усеченной призмы
- •Глава 6. Кривые линии
- •6.1. Основные определения и проекции кривых
- •6.2. Пространственные кривые
- •Глава 7. Кривые поверхности
- •7.1. Общие сведения
- •7.2. Поверхности вращения
- •7.3. Пересечение поверхности вращения плоскостью
- •7.3.1. Цилиндр. Возможные сечения
- •7.3.2. Конус. Возможные сечения
- •7.3.3. Пересечение поверхности вращения с плоскостью
- •Положения заданной прямыми линиями ав и вс
- •7.4. Пересечение поверхности вращения с прямой линией
- •7.5. Взаимное пересечение поверхностей
- •7.5.1. Способ вспомогательных секущих плоскостей
- •7.5.2. Способ вспомогательных сферических поверхностей
- •7.6. Развертка поверхности вращения
- •7.7. Развертываемые и косые поверхности
- •7.7.1. Линейчатые развертываемые поверхности.
- •Заключение
- •Список литературы
- •Введение 3 Глава 1. Метод проецирования 3
- •1.1 Центральная проекция 3
- •Глава 2. Точка, прямая, плоскость 12
- •Глава 3. Относительное положение прямой и
- •Глава 4. Способы преобразования чертежа 37
- •4.1.1 Преобразование чертежа точки и прямой 37
- •Глава 5. Многогранники 49
- •Глава 6. Кривые линии 59
- •Глава 7. Кривые поверхности 63
- •Заключение 91
5.1. Общие положения
Многогранником называют геометрическое тело, ограниченное плоскими многоугольниками. Эти многоугольники называют гранями общие стороны смежных многоугольников – ребрами, вершины многогранных углов, образованных его гранями, сходящимися в одной точке - вершинами многогранника.
Совокупность вершин и соединяющих их ребер называют сеткой многогранника.
Рассмотрим только выпуклые многогранники, то есть такие, все грани которых лежат по одну сторону от каждой его грани.
Из всех многогранников наибольший практический интерес представляют призмы, пирамиды и правильные многогранники.
Многогранник, две грани которого n–угольники, лежащие в параллельных плоскостях, а остальные грани параллелограммы, называется n–угольной призмой.
Призма, боковые ребра которой перпендикулярны плоскостям оснований, называется прямой призмой.
Если боковые ребра призмы не перпендикулярны плоскостям оснований, то она называется наклонной призмой.
Многогранник, одна из граней которого произвольный многоугольник, а остальные грани треугольники имеющие общую вершину, называется пирамидой (рис.5.1б).
Если основание пирамиды правильный многоугольник и вершина пирамиды лежит на перпендикуляре восстановленном из центра этого многоугольника, то она называется правильной пирамидой (рис.5.1б).
К правильным многогранникам относятся те, грани которых представляют собой равные и правильные многоугольники, например: гексаэдр (куб) – правильный шестигранник (рис.5.1а), тетраэдр – правильная треугольная пирамида (рис.5.1в), октаэдр – правильный восьмигранник, додекаэдр – правильный двенадцатигранник, икосаэдр – правильный двадцатигранник.
Правильный четырехгранник, или тетраэдр (рис.5.1в), состоит из четырех равносторонних и равных треугольников. Они соединены по три около каждой вершины. Тетраэдр представляет собой частный случай пирамиды. Правильный шестигранник (куб), или гексаэдр, состоит из шести равных квадратов, соединенных по три у каждой вершины.
На комплексном чертеже построение многогранников сводится к построению его сетки (проекций его вершин и ребер). Из многогранников наибольший практический интерес представляют призмы, пирамиды и правильные многогранники.
Рис. 5.1 – Многогранники: а) куб; б) пирамида; в) тетраэдр;
Г) призма усеченная
На рисунке 5.2 представлен комплексный чертеж прямой треугольной усеченной призмы. При построении проекций точек, лежащих на гранях призмы, необходимо выполнять условие принадлежности точки плоскости. Если задана фронтальная проекция точки К(КV), то горизонтальная ее проекция (КН) будет лежать на следе проецирующей грани ВСС¢В¢.
Рис. 5.2. Построение проекций точки К принадлежащей
Грани вcc’в’
Рассмотрим комплексный чертеж треугольной призмы, ребра которой произвольно наклонены к плоскостям проекций Н и V (рис. 5.3).
Рис. 5.3. Построение проекций точки К принадлежащей
Грани авв’а’
Требуется построить горизонтальную проекцию (КН) точки К по известной ее фронтальной проекции (КV), при условии, что точка К принадлежит грани АВВ¢А¢. Выбираем в грани АВВ¢А¢ любую из прямых, проходящую через данную точку К. Такой прямой может быть прямая 12 произвольного положения, пересекающая ребра АА¢ и ВВ¢ или прямая (КЗ), параллельная боковым ребрам и пересекающая ребро АВ в точке 3. Фронтальные проекции (1V2V) и (КVЗV) прямых 12 и КЗ проходят через фронтальную проекцию (КV) искомой точки. Горизонтальные проекции (1Н2Н) и (КНЗН) определяются по условию принадлежности прямых данной грани АВВ¢А¢. На пересечении линии связи с горизонтальной проекцией одной из вспомогательных прямых и будет горизонтальная проекция КН точки К.
На комплексном чертеже треугольной пирамиды SАВС рисунок 5.4 требуется построить фронтальную проекцию (КV) точки К, принадлежащей грани SBC по заданной ее горизонтальной проекции КН. Ход построения при помощи вспомогательных прямых линий (первый вариант с помощью прямой S2, второй вариант с помощью прямой К1//ВС) показан на чертеже стрелками.
Рис. 5.4. Построение проекций точки К принадлежащей