Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебник Основы аналитической химии.doc
Скачиваний:
2
Добавлен:
17.02.2020
Размер:
16.11 Mб
Скачать

Глава 8 Анализ объектов окружающей среды и некоторых других объектов*

Объекты, с которыми сталкиваются специалисты-аналитики, весьма разнообразны. Их можно классифицировать по многим признакам. Проще всего выделять объекты анализа не по их составу (его еще только предстоит определить!), а по происхождению. Выделяют, в частности, объекты окружающей среды, геологические объекты, объекты криминалистической экспертизы, пищевые продукты, нефтепродукты, лекарственные препараты и некоторые другие объекты. Каждая группа объектов тесно связана с какой-либо областью человеческой деятельности. Научные исследования в области органической химии требуют выяснения состава и структуры множества природных и синтетических веществ. Медицинские исследования и практика здравоохранения формируют свой перечень объектов (кровь, слюна, выдыхаемый воздух и т. п.). В каждой отрасли промышленности также сложился собственный список объектов анализа и показателей их состава.

Рассказать подробно о том, как анализируют объекты каждого типа, в рамках одной книги невозможно. Далее будет кратко рассказано об анализе объектов трех типов. В качестве примера неорганических объектов взяты геологические материалы (например, руды металлов), а также металлы и их сплавы (раздел 8.1). С использования металлов когда-то началось развитие цивилизации (переход человечества из каменного века в «бронзовый» и «железный»), а с исследования состава руд и металлов – развитие химического анализа.

Примером обширной группы органических объектов анализа могут быть индивидуальные органические соединения, продукты тонкого лабораторного синтеза (раздел 8.2). Результаты их анализа позволили в конце XIX века установить строение молекул и создать теорию химических реакций, т. е. легли в основу современной химической науки.

Исключительную значимость в конце XX века приобрел анализ объектов окружающей среды и основанный на результатах такого анализа экологический мониторинг. Анализ объектов окружающей среды будет рассмотрен более подробно (разделы 8.3–8.6).

8.1. Анализ геологических объектов и металлов

Геологические объекты. К этой группе относят горные породы, разные руды и минералы, нерудные полезные ископаемые (например, различные соли и др.). Результаты анализа таких объектов необходимы геологической службе и отраслям промышленности, потребляю­щим минеральное сырье, – черной и цветной металлургии, промышленности строительных материалов. Результатом химического анализа геологических объектов стало открытие многих месторождений полезных ископаемых.

При анализе геологических объектов основное значение имеет элементный анализ. Определяют содержание макро- и микрокомпонентов. Микро­компонентами обычно считают элементы, содержание которых не пре­вышает 0,01 %. Разнообразие состава геологических объектов требует создания множества стан­дартных образцов с известным содержанием макро- и микрокомпонентов.

Анализ нерастворимых в воде минералов в течение долгого времени вели, сплавляя их с щелочами, содой или другими веществами, а затем растворяя полученную смесь в кислотах. Отдельные макро- и микрокомпоненты пробы затем определяли в растворе методами гравиметрии, титриметрии, фотометрии. Соответствующие методики были исключительно трудоемкими и длительными. Иногда анализ одной пробы требовал нескольких недель напряженной работы. В настоящее время макрокомпоненты в геологических материалах обычно определяют без перевода пробы в раствор, например рентгенофлуорес­центным методом.

Более сложной задачей является определение микропримесей. Ее также старались решить без растворения пробы, используя, например, методы атомно-эмиссионного спектрального анализа с дуговым возбуждением. При этом одновременно определяли множество индивидуальных компонентов пробы. В анализе минерального сырья в конце XX века полу­чили распространение ядерно-физические методы. Так, уран, торий и калий обычно определяют по радиоактивности, бериллий – фотонейтронным методом, золото и серебро – гамма-активационным методом, олово – методом резонансной спектроскопии.

При анализе геологических объектов важно не только определение общего содержания элементов. Необходимо знать, в какой форме они присутствуют (вещественный анализ), какие фазы образуют (фазовый анализ). Это важно для разработки оптимальной технологии переработки минерального сырья. Вещественный и фазовый анализ геологических объектов, как и элементный анализ, в настоящее время проводят физическими методами, прежде всего рентгеноспектральными. Отметим, что в области анализа минерального сырья и других геологических объектов в нашей стране работали крупнейшие специалисты-аналитики, в частности акад. И.П. Алимарин и проф. А.К. Русанов. Под их руководством были созданы экспрессные и точные «инструментальные» методики, с помощью которых теперь в сотнях лабораторий геологического профиля ежегодно выполняют миллионы анализов.

Металлы. Чистые металлы преимущественно анализируют на предприятиях, производящих редкие металлы и изделия из них, а также радиоэлектронную аппаратуру. Сплавы (сталь, чугун, бронза и т. п.) в технике используют гораздо чаще, чем чистые металлы. Сплавы на основе черных и цветных металлов анализируют на предприятиях черной и цветной ме­таллургии, в лабораториях электротехнических, радиотехнических и машиностроительных предприятий. Свойства сплавов в значительной степени зависят от характера и содержания примесей, в том числе специально вводимых легирующих добавок. Например, известно о вредном влиянии висмута, олова, сурьмы, кадмия, селена и мышьяка на свойства сплавов никеля и кобальта, применяющихся для изготовления лопастей турбин самолетов. Эти примеси в концентрациях выше 10–3 % вызывают трещины и разруше­ния лопастей турбин. Примеси хрома и никеля в сталях делают их нержавеющими, примесь ванадия – ударопрочными.

Анализ металлов и сплавов на их основе – вероятно, наиболее древняя область химического анализа. История этого анализа очень интересна. Примером могут быть работы Т. Бергмана (конец XVIII века), который установил, чем с точки зрения химического состава отличается сталь от чугуна. Оказалось, что получение стали из чугуна требует целенаправленного снижения содержания углерода. Содержание углерода в сплавах Бергман определял, используя только что созданный им гравиметрический метод. Химико-аналитические работы Бергмана стали основанием для создания научной металлургии.

Для анализа металлов и их сплавов последовательно применяли самые разные методы. В средневековье для этой цели использовали методы «пробирного искусства»», основанные на плавлении пробы с флюсами. Позднее образцы сплавов стали растворять, а компоненты определять в растворе химическими методами. В первой половине XX века основными методами анализа металлов стали электрохимические (особенно электрогравиметрия) и фотометрические. Метод атомно-эмиссионной спектроскопии (в основном с искровым возбуждением) в анализе металлов используют с 20‑х гг. XX века, но металлургам обычно требовалась большая точность, чем геологам, и в анализе металлов классический атомно-эмиссионный спектральный анализ применяли не так широко, как в геологии. Зато метод атомно-абсорбционного анализа металлурги и машиностроители стали широко использовать сразу же после его изобретения. Сегодня в лабораториях главные компоненты сплавов определяют методами титриметрического анализа, электрогравиметрии, спектрофотометрии, рентгеновскими методами, а микропримеси – в основном методом атомной абсорбции, а также эмиссионным методом с применением индуктивно связанной плазмы. Для определения так называемых газообразующих примесей (водо­рода, кислорода, азота, углерода, серы) применяют плавление в вакууме и масс-cпектрометрию. А сплавы на основе платиновых металлов в некоторых лабораториях анализируют, используя излучение, создаваемое ядерными реакторами.

Задачи анализа металлов и сплавов в современную эпоху многообразны: определение при­месей, в том числе газообразующих (О, Η, Ν, С, S), определение легирующих добавок, анализ отдельных фаз (например, карбидных включений). Иногда необходимо определить не только общее содержание компонентов в пробе, но и их распределение по площади или глубине. Труднейшей задачей для аналитиков стал контроль быстро протекающих металлургических процессов. В ходе выплавки стали надо за 15–20 минут успеть провести несколько последовательных анализов состава расплавленного металла, определить содержание углерода, азота, серы, фосфора, легирующих металлов и периодически, чуть ли не ежеминутно, выдавать технологам быстро меняющиеся результаты анализов. Эту сложную задачу удалось решить, благодаря применению спектрального и масс-спектро- метрического анализа, с помощью средств автоматизации, а позднее – компьютерной техники.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]