
- •Тема 1.
- •Область применения каменной кладки в дорожном строительстве.
- •1.2. Понятие каменная кладка, виды кладок.
- •1.3. Материалы для каменной кладки.
- •1.4. Правила разрезки и элементы кладки
- •1.5. Прочность каменной кладки
- •1 .6. Деформативность каменной кладки
- •1.7. Сопротивления каменной кладки.
- •1.8. Расчетные высоты стен и столбов каменной кладки.
- •1.9. Особенности расчета каменных и армокаменных конструкций
- •1.10. Расчет прочности центрально-сжатых элементов
- •Тема 2.
- •2.1. Расчет каменных конструкций на внецентренное сжатие.
- •2.2. Расчет на смятие (местное сжатие)
- •2.3. Расчет прочности изгибаемых элементов
- •2.4. Расчет конструкций кладки на срез.
- •2.5. Центрально-растянутые элементы
- •Тема 3.
- •3.1. Армокаменные конструкции.
- •3.2. Поперечное армирование выполняют
- •3.3. Продольное армирование
- •3.4. Деформационные швы
- •3.5. Особенности каменной кладки в зимний период
- •Тема 4.
- •4.1. Общие сведения о древесине.
- •4.2. Свойства древесины
- •1. Влажность
- •2. Гигроскопичность и водопроницаемость древесины
- •4.4. Механические свойства древесины
- •4.5. Пороки древесины.
- •1. Сучки
- •2. Трещины и деформации
- •3. Пороки формы ствола
- •4. Пороки строения древесины
- •5. Повреждения насекомыми и грибами
- •4.6.Работа древесины на различные виды силовых воздействий
- •Тема 5.
- •5.1. Соединения деревянных конструкций
- •5.3. Стропильные фермы.
- •5.4. Расчет деревянных ферм
- •Тема 6.
- •6.1. Расчет цельных элементов деревянных конструкций.
- •6.2. Расчет по предельным состояниям
- •Тема 8.
- •8.1. Область применения металлических конструкций
- •8.2. Требования, предъявляемые к металлическим конструкциям
- •8.3. Общая характеристика сталей.
- •8.4. Структура низколегированных сталей
- •8.5. Свойства стали
- •8.6. Классификация сталей
- •8.8. Выбор сталей для строительных конструкций
- •8.9. Влияние температуры на стали.
- •8.10.Сортамент: общая характеристика сортамента
- •8.11.Нагрузки и воздействия на стали
- •Тема 9.
- •9.1. Алюминиевые сплавы
- •9.2. Явление наклепа сталей.
- •9.3. Явление старения сталей.
- •9.4.Коррозия и методы борьбы с ней
- •9.5. Работа стали под нагрузкой:
- •9.6.Работа стали при сложном напряженном состоянии
- •9.7. Концентрация напряжений
- •Тема 10.
- •10.2. Сварные соединения. Виды сварки и их характеристика
- •10.3.Виды сварных соединений
- •10.4. Работа и расчет соединений стыковых швов. Работа и расчет соединений, выполненных угловыми швами
- •1.Стыковые швы
- •2.Угловые швы
- •10.5. Виды и общая характеристика болтовых соединений
- •10.6. Работа и расчет болтовых соединений
- •Тема11.
- •11. 1. Основы методики расчета металлических конструкций по предельным состояниям
- •11.2.Нормативные и расчетные сопротивления
- •11.3. Виды напряжений и их учет в расчете элементов стальных конструкций
- •Тема 12.
- •12.1. Стальные балки
- •12.2. Типы балок и их статические схемы
- •12.3. Стыки балок
- •12.4.Проверка и обеспечение общей устойчивости балки
- •12.5. Прокатные балки. Подбор сечения
- •12.6. Составные балки. Высота балки
- •Тема13.
- •13.1. Фермы. Общая характеристика и классификация
- •13.2. Системы решеток ферм
- •13.3. Типы сечений стержней ферм
- •13.4.Определение расчетной длины стержней фермы
- •13.5.Подбор сечения сжатых и растянутых элементов
- •13.6.Подбор сечения стержней по предельной гибкости
- •Тема14.
- •14.2.Подбор сечения сплошной колонны
- •14.3.Сквозные колонны. Подбор сечения и проверка устойчивости
- •14.4. Базы колонн. Типы баз колонн. Расчет и конструирование баз колонн
- •14.5.Связи
14.4. Базы колонн. Типы баз колонн. Расчет и конструирование баз колонн
Конструкция базы должна отвечать принятому в расчетной схеме колонны способу сопряжения ее с основанием. При шарнирном сопряжении база при действии случайных моментов должна иметь возможность некоторого поворота относительно фундамента, при жестком сопряжении необходимо обеспечить сопряжение базы с фундаментом, не допускающее поворота.
По конструктивному решению базы могут быть с траверсой (рис. а), с фрезерованным торцом (рис. б) и с шарнирным устройством в виде центрирующей плиты (рис. в).
Рис. Типы баз колонн
При сравнительно небольших расчетных усилиях в колоннах (до 4000-5000 кН) чаще применяются базы с траверсами. Траверса воспринимает нагрузку от стержня колонны и передает ее на опорную плиту. Для увеличения равномерной передачи давления с плиты на фундамент, жесткость плиты увеличивают дополнительными ребрами между ветвями траверсы (рис. а). В колоннах с большими расчетными усилиями (6000-10000 кН и более) целесообразно фрезеровать торец базы. В этом случае траверса и ребра отсутствуют и плита, чтобы равномерно передать нагрузку на фундамент, должна иметь значительную толщину. Конструкция базы с фрезерованным торцом значительно проще и в этом случае позволяет вести монтаж более простым, безвыверочным способом.
Базы с шарнирным устройством (рис. б) четко отвечают расчетной схеме, но из-за большей сложности монтажа в колоннах применяются редко. При шарнирном сопряжении колонны с фундаментом анкерные болты ставятся лишь для фиксации проектного положения колонны и закрепления ее в процессе монтажа. Анкеры в этом случае прикрепляются непосредственно к опорной плите базы; благодаря гибкости плиты обеспечивается необходимая податливость сопряжения при действии случайных моментов.
Диаметр анкерных болтов при шарнирном сопряжении принимают равным d = 20-30 мм, при жестком d = 24-36 мм. Для возможности некоторой передвижки колонны в процессе ее установки диаметр отверстия для анкерных болтов принимается в 1,5-2 раза больше диаметра анкеров. На анкерные болты надевают шайбы с отверстием, которое на 3 мм больше диаметра болта, и после натяжения болта гайкой шайбу приваривают к базе.
Расчет и конструктивное оформление баз с траверсой и консольными ребрами
После выбора типа базы расчетом устанавливают размеры опорной плиты в плане и ее толщину (рис.).
Рис. К расчету базы колонны
Требуемая площадь плиты
,
(1)
где N – расчетная нагрузка на колонну;
Rpb – расчетное сопротивление сжатию материала фундамента (бетона).
Размеры плиты В и L определяются в пределах требуемой нагрузки по конструктивным соображениям в зависимости от размещения ветвей траверсы или укрепляющих плиту ребер.
Плита работает как пластинка на упругом основании, воспринимающая давление от ветвей траверсы и ребер. Опыты показали, что давление на фундамент распределяется неравномерно, с пиками в местах передачи нагрузки. Однако для простоты расчета давление под плитой принимается равномерно распределенным. Плиту рассчитывают как пластину, нагруженную снизу равномерно распределенным давлением фундамента и опертую на элементы сечения стержня и базы колонны (ветви траверсы, диафрагмы, ребра и т. п.).
В соответствии с конструкцией базы плита может иметь участки, опертые на четыре канта - контур 1, на три канта – 2, на два канта - 3 и консольные – 4 на рис.
Наибольшие изгибающие моменты, действующие на полосе шириной 1 см, в пластинках, опертых на 3 или 4 канта, определяют по формулам:
при опирании на три канта
,
(2)
при опирании на четыре канта
,
(3)
где q - расчетное давление на 1 см2 плиты, равное напряжению на фундамент.
α и β - коэффициенты, зависящие соответственно от отношения более длинной стороны b к более короткой а и от отношения закрепленной стороны пластинки b1 к свободной а1. Размеры а и b берутся между кромками ветвей траверсы или ребер.
При
отношении сторон
расчетный момент определяется как для
однопролетной балочной плиты по формуле
.
(4)
При
отношении сторон
плита рассчитывается как консоль.
При опирании плиты на два канта, сходящихся под углом, для повышения запаса прочности можно пользоваться формулой (3). Для этой цели следует принимать размер а1 по диагонали между кантами, размер b1 равным расстоянию от вершины угла до диагонали (рис.).
Изгибающий момент на консольном участке плиты определяется по формуле
.
(5)
По
наибольшему из найденных для различных
участков плиты изгибающих
моментов определяется момент сопротивления
плиты шириной
1см
,
а по нему требуемая толщина плиты:
.
(6)
Обычно толщину плиты принимают в пределах 20 - 40 мм. При резком отличии моментов по величине на различных участках плиты надо внести изменения в схему опирания плиты, чтобы по возможности выравнить величины моментов, что должно привести к облегчению базы.
Усилие стержня колонны передается на траверсу через сварные швы, длина которых и определяет высоту траверсы.
Если ветви траверсы прикрепляются к стержню колонн четырьмя швами, то получить требуемую высоту траверсы можно по формуле:
.
(7)
Высота углового шва принимается не более 1 - 1,2 толщины ветви траверсы, которая из конструктивных соображений устанавливается равной 10 - 16 мм. Высоту траверсы следует принимать не больше 85 ∙ kf.
Швы, прикрепляющие ветви траверсы к опорной плите, рассчитывают на полное усилие, действующее в колонне.