Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ВСЕ лекции (весна).doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
2.12 Mб
Скачать

1 .6. Деформативность каменной кладки

Как и в бетоне деформации кирпичной кладки под нагрузкой складываются из упругой и неупругой , проявляемые при длительном действии нагрузки. Основным их источником являются деформации ползучести, развивающиеся в растворных швах.

При (1)

где Ru – временное сопротивление кладки сжатию, кладка работает упруго.

Для неармированной кладки деформации выражаются начальным модулем упругости

, (2)

где - упругая характеристика кладки

,

где K – коэффициент зависящий от вида кладки

Для армированной кладки

(3)

При более высоких напряжениях модуль деформаций становится переменной величиной, равной в каждой точке кривой секущего модуля деформации

(4)

При расчете конструкций по прочности в соответствии с нормами

(5)

При определении деформации кладки от продольных или поперечных сил, периода колебания каменной кладки, жесткости, модуль деформации принимается равным

(6)

1.7. Сопротивления каменной кладки.

Каменная кладка хорошо сопротивляется сжатию и относительно плохо - растяжению. Сопротивление кладки растяжению зависит от сцепления раствора с камнем, которое определяется рядом факторов и колеблется в широких пределах. Проектная прочность сцепления может быть обеспечена только при условии соблюдения ряда специальных производственных мероприятий. Поэтому каменные стены и столбы проектируют таким образом, чтобы эксцентрицитет не превышал 0,45h, где h высота сечения; при этом в расчете не учитывают сопротивление кладки растяжению, и внутреннее продольное усилие уравновешивается напряжениями одной лишь сжатой зоны.

Вследствие местных неровностей и неодинаковой плотности раствора в швах при сжатии кладки камни испытывают, кроме напряжений сжатия, также напряжения изгиба и среза. Если модуль упругости камня больше, чем раствора, то в поперечном направлении в камне возникают напряжения растяжения, а в растворе - сжатия. Вертикальные швы кладки вследствие слабого сцепления раствора с камнем могут рассматриваться как узкие вертикальные щели, у концов которых возникает концентрация напряжений. Таким образом, при сжатии кладки ее элементы находятся в весьма сложном напряженном состоянии, что является причиной значительной разницы между прочностью кладки и составляющих ее камня и раствора. Например, прочность кирпичной кладки на самом прочном растворе составляет обычно лишь 35-40% прочности кирпича.

1.8. Расчетные высоты стен и столбов каменной кладки.

Отношение высоты стены или столба к толщине независимо от результатов расчета не должно превышать указанных в пп. 6.17 — 6.20. СНиП II-22-81 «Каменные и армокаменные конструкции».

Отношение b = H/h (где H — высота этажа, h — толщина стены или меньшая сторона прямоугольного сечения столба) для стен без проемов, несущих нагрузки от перекрытий или покрытий, при свободной длине стены L _ 2,5 Н не должно превышать величин указанных СНиП II-22-81 «Каменные и армокаменные конструкции». Для стен с пилястрами и столбов сложного сечения вместо h принимается условная толщина hred = 3,5 i, где i = . Для столбов круглого и многоугольного сечений, вписанных в окружность, hred = 0,85d, где d — диаметр сечения столба.

Примечание. При высоте этажа H большей свободной длины стены L отношение

L /h не должно превышать значения 1,2 b.

Отношения b для стен и перегородок, при условиях, отличающихся от указанных выше следует принимать с поправочными коэффициентами к, приведенными в табл.

СНиП II-22-81 «Каменные и армокаменные конструкции».