
- •Тема 1.
- •Область применения каменной кладки в дорожном строительстве.
- •1.2. Понятие каменная кладка, виды кладок.
- •1.3. Материалы для каменной кладки.
- •1.4. Правила разрезки и элементы кладки
- •1.5. Прочность каменной кладки
- •1 .6. Деформативность каменной кладки
- •1.7. Сопротивления каменной кладки.
- •1.8. Расчетные высоты стен и столбов каменной кладки.
- •1.9. Особенности расчета каменных и армокаменных конструкций
- •1.10. Расчет прочности центрально-сжатых элементов
- •Тема 2.
- •2.1. Расчет каменных конструкций на внецентренное сжатие.
- •2.2. Расчет на смятие (местное сжатие)
- •2.3. Расчет прочности изгибаемых элементов
- •2.4. Расчет конструкций кладки на срез.
- •2.5. Центрально-растянутые элементы
- •Тема 3.
- •3.1. Армокаменные конструкции.
- •3.2. Поперечное армирование выполняют
- •3.3. Продольное армирование
- •3.4. Деформационные швы
- •3.5. Особенности каменной кладки в зимний период
- •Тема 4.
- •4.1. Общие сведения о древесине.
- •4.2. Свойства древесины
- •1. Влажность
- •2. Гигроскопичность и водопроницаемость древесины
- •4.4. Механические свойства древесины
- •4.5. Пороки древесины.
- •1. Сучки
- •2. Трещины и деформации
- •3. Пороки формы ствола
- •4. Пороки строения древесины
- •5. Повреждения насекомыми и грибами
- •4.6.Работа древесины на различные виды силовых воздействий
- •Тема 5.
- •5.1. Соединения деревянных конструкций
- •5.3. Стропильные фермы.
- •5.4. Расчет деревянных ферм
- •Тема 6.
- •6.1. Расчет цельных элементов деревянных конструкций.
- •6.2. Расчет по предельным состояниям
- •Тема 8.
- •8.1. Область применения металлических конструкций
- •8.2. Требования, предъявляемые к металлическим конструкциям
- •8.3. Общая характеристика сталей.
- •8.4. Структура низколегированных сталей
- •8.5. Свойства стали
- •8.6. Классификация сталей
- •8.8. Выбор сталей для строительных конструкций
- •8.9. Влияние температуры на стали.
- •8.10.Сортамент: общая характеристика сортамента
- •8.11.Нагрузки и воздействия на стали
- •Тема 9.
- •9.1. Алюминиевые сплавы
- •9.2. Явление наклепа сталей.
- •9.3. Явление старения сталей.
- •9.4.Коррозия и методы борьбы с ней
- •9.5. Работа стали под нагрузкой:
- •9.6.Работа стали при сложном напряженном состоянии
- •9.7. Концентрация напряжений
- •Тема 10.
- •10.2. Сварные соединения. Виды сварки и их характеристика
- •10.3.Виды сварных соединений
- •10.4. Работа и расчет соединений стыковых швов. Работа и расчет соединений, выполненных угловыми швами
- •1.Стыковые швы
- •2.Угловые швы
- •10.5. Виды и общая характеристика болтовых соединений
- •10.6. Работа и расчет болтовых соединений
- •Тема11.
- •11. 1. Основы методики расчета металлических конструкций по предельным состояниям
- •11.2.Нормативные и расчетные сопротивления
- •11.3. Виды напряжений и их учет в расчете элементов стальных конструкций
- •Тема 12.
- •12.1. Стальные балки
- •12.2. Типы балок и их статические схемы
- •12.3. Стыки балок
- •12.4.Проверка и обеспечение общей устойчивости балки
- •12.5. Прокатные балки. Подбор сечения
- •12.6. Составные балки. Высота балки
- •Тема13.
- •13.1. Фермы. Общая характеристика и классификация
- •13.2. Системы решеток ферм
- •13.3. Типы сечений стержней ферм
- •13.4.Определение расчетной длины стержней фермы
- •13.5.Подбор сечения сжатых и растянутых элементов
- •13.6.Подбор сечения стержней по предельной гибкости
- •Тема14.
- •14.2.Подбор сечения сплошной колонны
- •14.3.Сквозные колонны. Подбор сечения и проверка устойчивости
- •14.4. Базы колонн. Типы баз колонн. Расчет и конструирование баз колонн
- •14.5.Связи
8.9. Влияние температуры на стали.
Механические свойства стали при нагревании ее до температуры t = 200...250 °С практически не меняются (рис.2.2.2).
1 – модуль упругости; 2 – временное сопротивление; 3 – предел текучести
Рис.2.2.2. Механические свойства низкоуглеродистой стали
при изменении температуры
При температуре 250...300°С прочность стали несколько повышается, пластичность снижается. Сталь становится более хрупкой. При этой температуре не следует сталь деформировать или подвергать ударным воздействиям.
При нагревании выше 400°С резко падает предел текучести и временное сопротивление, а при t = 600...650°С наступает температурная пластичность и сталь теряет свою несущую способность.
При отрицательных температурах прочность стали возрастает, ударная вязкость падает и сталь становится более хрупкой (рис. 2.2.2).
Переход от вязкого разрушения к хрупкому происходит, как правило, скачкообразно, в узком температурном диапазоне, называемом порогом хладноломкости. Обычно в качестве порога хладноломкости принимают температуру, при которой ударная вязкость становится меньше определенного значения. Температуру, при которой ударная вязкость снижается до этого установленного значения, принимают за порог хладноломкости или критическую температуру перехода стали в хрупкое состояние. Данные о критических температурах хрупкости позволяют установить температурный интервал, при котором рекомендуется использовать в конструкциях ту или иную сталь.
8.10.Сортамент: общая характеристика сортамента
В строительных конструкциях применяют в основном прокатную сталь, поставляемую с металлургических заводов в виде профилей различной формы поперечного сечения. Для стальных конструкций используют листовую и профильную сталь. Профильную сталь подразделяют на сортовую (круг, квадрат, полоса, уголки) и фасонную (двутавры, швеллеры и другие фасонные профили). Кроме того, широко применяют вторичные профили: сварные, получаемые сваркой полос или листов, и гнутые, образованные холодной гибкой полос и листов.
Современный сортамент разработан в результате многолетнего развития металлических конструкций и теоретических исследований по выявлению рациональных типов профилей и частоты их градации.
Наиболее дешевы прокатные профили. Они непосредственно с металлургического завода идут на изготовление металлоконструкций. Для образования сварных и гнутых профилей требуется дополнительная операция - изготовление профиля из прокатного листа.
Сталь листовая. Листовую сталь широко применяют в строительстве. Ее классифицируют следующим образом.
Сталь толстолистовая (ГОСТ 19903—74). Сортамент этой стали включает листы толщиной от 4 до 160 мм, шириной от 600 до 3800 мм. Обычно применяемая ширина не превышает 2400 мм. Листовая горячекатаная сталь поставляется в листах длиной 6...12 м и толщиной до 160 мм или в рулонах толщиной от 1,2 до 12 мм и шириной от 500 до 2200 мм. В строительных конструкциях рекомендуется применять следующие толщины листовой стали: от 4 до 6 мм — через 1 мм, от 6 до 22 мм - через 2 мм и далее 25, 28, 30, 32, 36, 40, 50, 60, 80, 100 мм. Толстолистовую сталь используют в листовых конструкциях и сплошностенчатых элементах стержневых конструкций (балках, колоннах).
Сталь тонколистовая толщиной до 4 мм прокатывается холодным и горячим способами. Холоднокатаная сталь (ГОСТ 19904-74 с изм.) значительно дороже горячекатаной (ГОСТ 19903-74 с изм.). Тонкую листовую сталь применяют при изготовлении гнутых и штампованных тонкостенных профилей, для кровельных покрытий и т.п. Из холоднокатаной, оцинкованной, рулонной стали изготовляют профилированные настилы.
Сталь широкополосная универсальная (ГОСТ 8200-70) благодаря прокату между четырьмя валками имеет ровные края. Толщина такой стали от 6 до 60 мм, ширина от 200 до 1050 мм и длина от 5 до 12 м. Применение универсальной стали уменьшает отходы и снижает трудоемкость изготовления конструкций, так как не требует резки и выравнивания кромок строжкой.
Сталь полосовая (ГОСТ 103—76 с изм.) имеет толщину от 4 до 60 мм при ширине до 200 мм. Ее применяют для конструктивных деталей типа диафрагм и ребер жесткости, а также для изготовления гнутых профилей.
Рифленая сталь (ГОСТ 8568—77) толщиной от 2,5 до 8 мм с ромбическими или чечевицеобразными выступами, препятствующими скольжению при ходьбе, используется для настилов площадок.
Для площадок, где возможно скопление пыли, применяют просечно-вытяжную сталь (ГОСТ 8706-78) толщиной от 4,5 до 6 мм, получаемую холодной вытяжкой листа с предварительно нанесенными разрезами.
Уголковые профили. Уголковые профили прокатывают в виде равнополочных (ГОСТ 8509-93) и неравнополочных (ГОСТ 8510-86) уголков. Сортамент уголков весьма обширен: от очень малых профилей с площадью сечения 1...1.5 см2 до мощных профилей с площадью сечения 140 см2. Полки уголков имеют параллельные грани, что облегчает конструирование. Тонкие уголки рациональны в элементах, работающих на осевое сжатие. Чем тоньше полки уголков, тем больше (при одинаковой площади сечения) радиус инерции i, от которого зависит несущая способность элемента.
Для растянутых элементов толщина уголков с точки зрения их несущей способности не имеет значения, но и в этом случае тонкие уголки предпочтительнее, поскольку более развитое сечение имеет большую жесткость и удобнее при транспортировке и монтаже. Если же полки уголков подвергаются изгибу, например при опирании на них плит перекрытий, то применяют толстые уголки. Уголки нашли широкое применение в решетчатых конструкциях, прежде всего в фермах. Сечения элементов решетчатых конструкций компонуют часто из двух или четырех уголков.
Швеллеры. Геометрические характеристики сечения швеллеров определяют по номерам, которые соответствуют высоте стенки швеллера (в см). Сортамент (ГОСТ 8240-93) включает швеллеры от №5 до №40 с уклоном внутренних граней полок. Уклон внутренних граней полок затрудняет конструирование. В ГОСТ входят и швеллеры с параллельными гранями полок с буквой П в обозначении, например 22П, сечения которых имеют лучшие расчетные характеристики и более конструктивны, так как упрощают болтовые крепления к полкам.
Швеллеры используют в элементах, работающих на изгиб, например в прогонах покрытий зданий. В конструкциях, работающих на осевые силы, швеллеры применяют в основном в виде составных сечений, соединенных планками или решеткой, например в колоннах и поясах тяжелых ферм. Возможно применение швеллеров для коробчатых сечений со сваркой полок сплошными швами. Использование прерывистых шпоночных швов весьма проблематично, поскольку помимо повышенной концентрации напряжений в концах шпонок в таком сечении внутренняя полость не герметизирована, что может способствовать развитию коррозии.
Двутавры. Двутавр - наиболее рациональный профиль для элементов, работающих на изгиб.
В зависимости от геометрических параметров металлургическими заводами выпускаются несколько типов двутавров, которым соответствуют определенные области применения.
Балки двутавровые обыкновенные (ГОСТ 8239-89), так же как и швеллеры, имеют уклон внутренних граней полок и обозначаются номером, соответствующим их высоте в см. В сортамент входят профили от №10 до №60. Стенки крупных двутавров имеют толщину, составляющую 1/55 высоты двутавра. Чем тоньше стенка, тем выгоднее сечение балки при работе ее на изгиб. Однако по условиям технологии прокатки у большинства двутавров стенки получаются значительно толще, чем это требуется по условию их устойчивости. Благодаря сосредоточению материала в полках двутавры имеют большую жесткость относительно оси х, но небольшая ширина полок делает их недостаточно устойчивыми относительно оси у. Обыкновенные двутавры применяют в элементах, изгибаемых в плоскости стенки, а также в ветвях решетчатых колонн и различных опор.
Для обеспечения устойчивости относительно оси у эти двутавры должны иметь промежуточные закрепления.
Балки двутавровые широкополочные (ГОСТ 26020—83, СТО АСЧМ 20—93) имеют параллельные грани полок. Широкополочные двутавры прокатывают трех типов: нормальные двутавры (Б), широкополочные двутавры (Ш), колонные двутавры (К). Высота балочных профилей (Б) и (Ш) достигает 1000 мм при отношении ширины полок к высоте от b/h=0,75 (при малых высотах) до b/h=0,3 (при больших высотах). Колонные профили (К) имеют отношение ширины полок к высоте, близкое к единице, что придает им устойчивость относительно оси у. Благодаря большей ширине полок широкополочные двутавры имеют большую жесткость относительно оси у и могут применяться в конструкциях без дополнительных закреплений.
Конструктивные преимущества (параллельность граней полок и мощность сечений) позволяют применять широкополочные двутавры в виде самостоятельного элемента (балки, колонны, стержни тяжелых ферм), не требующего почти никакой обработки, что снижает трудоемкость изготовления конструкций в 2...3 раза.
Из широкополочных двутавров путем разрезки полки в продольном направлении получают тавровые профили, удобные для применения в решетчатых конструкциях. По мере расширения производства широкополочных двутавров применение обыкновенных двутавров сокращается.
Использование автоматической сварки позволяет изготовлять тонкостенные двутавры из листового проката с более выгодным распределением материала по сечению. Сварные двутавры имеют свой сортамент.
Трубы. В трубах материал распределен на максимальном удалении от центра тяжести, поэтому из всех типов сечения трубчатое имеет наибольший удельный радиус инерции. Наиболее рационально применение труб в элементах, работающих на осевое сжатие. Расход стали при этом снижается на 20...25 %, что покрывает повышение стоимости самих труб. Высокая коррозионная стойкость труб делают сооружения, выполненные из них, более долговечными.
Для строительных металлических конструкций применяют трубы круглого, квадратного и прямоугольного сечений.
Профилированный настил. Одним из видов гнутых профилей является профилированный настил, изготовляемый на специальных станах. Такой настил нашел широкое применение для площадок кровель и стеновых ограждений.
Профилированные листы различают по высоте и форме гофра. Для изготовления профилированного настила применяют листы толщиной от 0,6 до 1 мм. В зависимости от требуемой жесткости высота волны А составляет от 18 до 120 мм. Для обеспечения местной устойчивости полок и стенок профнастила устраивают продольные гофры.
Для обеспечения коррозионной стойкости профнастил изготовляют из оцинкованной стали. Профилированный настил поставляют по ГОСТ 24045-94 и техническим условиям отдельных заводов. При необходимости настил могут поставлять по индивидуальным заказам.
Наиболее распространенные типы настила для покрытий Н57-750-0,7 и Н75-750-0,8. Здесь первая цифра обозначает высоту волны, вторая — ширину настила, третья — толщину листа.