
- •Гусев в. Г. Теория и практика планирования многофакторных экспериментов
- •Предисловие
- •1. Основные понятия и определения
- •1.1 Понятия и характеристика однофакторного и многофакторного экспериментов, понятие планирования экспериментов
- •1.2. Объект исследования, параметры оптимизации, факторы и требования, предъявляемые к ним
- •2. Планирование и реализация полного факторного эксперимента
- •2.1. Выбор факторов и их кодирование
- •2.2 Выбор модели
- •2.3. Полный факторный эксперимент
- •2.4 Проведение опытов
- •2.5 Крутое восхождение по поверхности отклика
- •2.6 Дробный факторный эксперимент
- •3.Планирование и реализация многофакторного эксперимента второго порядка.
- •3.1 Центральные композиционные планы
- •3.2. Ортогональные планы
- •3.3 Ротатабельное планирование
- •3.4. Исследование области оптимума, представленной полиномом второй степени
- •3.5 Применение плана второго порядка для исследования аэродинамических потоков, генерируемых дискретными шлифовальными кругами
- •4.Применение планирования экспериментов при механической обработке материалов
- •4.1 Исследование шероховатости поверхности с использованием ротатабельного планирования
- •4.2 Оптимизация геометрии режущего инструмента на основе метода крутого восхождения по поверхности отклика.
- •4.3. Применение ротатабельного планирования второго порядка для исследования процесса торцового фрезерования
- •4.4. Составление композиционного плана проведения экспериментов при анализе параметров процесса шлифования
- •4.5. Исследование шероховатости поверхности, обработанной хонингованием
- •4.6. Исследование температуры, возникающей в зоне резания
- •Приложение. Таблицы математической статистики.
- •Значение g – критерия Кохрена
- •Значения критерия (k – число степеней свободы)
- •Список литературы
- •600000, Г. Владимир, ул. Горького, 87
2.2 Выбор модели
Перед проведением опытов, экспериментатор должен выбрать вид уравнения регрессии (модели). Выбор модели – это сложный процесс, связанный со многими обстоятельствами и соображениями. Как отмечалось выше, под математической моделью будем понимать функцию отклика. Выбрать модель – это значит выбрать вид этой функции, записать её уравнение. Затем спланировать и поставить эксперимент для отыскания численных значений коэффициентов уравнения.
Моделей бывает много и разных. Чтобы выбрать одну из них, надо четко знать, что мы хотим от модели, какие требования к ней предъявляем.
Исходя из выбранной стратегии, ясно, что главное требование к модели – это способность предсказывать направление дальнейших опытов с требуемой точностью. Так как до получения модели не известно, какое направление нам понадобится, то естественно требовать, чтобы точность предсказания во всех возможных направлениях была бы одинакова. Это значит, что в некоторой подобласти, в которую входят выполненные опыты, предсказанное с помощью модели значение отклика не должно отличаться больше, чем на некоторую заранее заданную величину. Модель, удовлетворяющая такому условию, называется адекватной. Если несколько различных моделей отвечает нужным требованиям, то следует выбрать ту из них, которая является самой простой. Модель выбирают на основании априорной информации либо на основании результатов предварительных экспериментов. Для двух факторов могут быть выбраны следующие виды моделей.
модель первой степени
,
(2.5)
модель второй степени
,
(2.6)
модель третьей степени
(2.7)
Выражения (2.5) – (2.7) называются уравнениями регрессии, а коэффициенты, стоящие перед кодовыми значениями факторов – коэффициентами регрессии. Итак, мы представили неизвестную нам функцию полиномом. Замена одной функции другой, примерно эквивалентной функцией, называется аппроксимацией. Следовательно, мы аппроксимировали неизвестную нам функцию полиномом. Но, как показано на примере, полиномы бывают различных степеней. Какой полином взять на первом шаге?
Эксперимент нужен для расчета численных значений коэффициентов регрессии. Поэтому, чем больше коэффициентов, тем больше опытов нужно поставить. Мы же стремимся сократить их число. Следовательно, надо найти полином, содержащий как можно меньше коэффициентов, но удовлетворяющий требованиям, предъявляемым к модели. При заданном числе факторов, чем ниже степень полинома, тем меньше в нем коэффициентов.
С другой стороны, нужно, чтобы модель предсказывала направление наискорейшего улучшения параметра оптимизации. Такое направление называют направлением градиента. Движение в этом направлении приведет к успеху быстрее, чем движение в любом другом направлении. В этом случае лучше использовать полином первой степени, так как он содержит информацию о направлении градиента, и, кроме того, в нем минимально возможное число коэффициентов при данном числе факторов.
Единственное опасение в том, будет ли линейная модель всегда адекватной. Однако всегда существует такая окрестность любой (почти любой) точки, в которой линейная модель адекватна. Размер такой области заранее не известен, но адекватность можно проверять по результатам эксперимента. Следовательно, выбрав сначала произвольную подобласть, мы рано или поздно найдем ее требуемые размеры. Как только это случится, воспользуемся движением по градиенту. Затем ищем линейную модель в другой подобласти. Цикл повторяется до тех пор, пока движение по градиенту не перестанет давать эффект. Это значит, что мы попали в область, близкую к оптимуму. Такая область называется «почти стационарной». Здесь линейная модель уже не нужна. Чтобы подробнее описать область оптимума, нужно перейти к полиномам более высокой степени.
Кроме задачи оптимизации, может возникать задача математического описания объекта исследования - построения интерполяционной модели. В этом случае нас не интересует оптимум. Здесь нам нужно предсказать результат с требуемой точностью во всех точках некоторой заранее заданной области. С этой целью последовательно увеличивают степень полинома до тех пор, пока модель не окажется адекватной.
Таким образом, на первой стадии экспериментальных исследований при отсутствии сведений о модели разумно выбирать модель первого порядка. Если же есть сведения о нелинейности, то принимается модель второго порядка.
Задачей планирования многофакторных экспериментов является отыскание коэффициентов регрессии, после чего модель процесса или модель функционирования устройства становится известной.