
- •Гусев в. Г. Теория и практика планирования многофакторных экспериментов
- •Предисловие
- •1. Основные понятия и определения
- •1.1 Понятия и характеристика однофакторного и многофакторного экспериментов, понятие планирования экспериментов
- •1.2. Объект исследования, параметры оптимизации, факторы и требования, предъявляемые к ним
- •2. Планирование и реализация полного факторного эксперимента
- •2.1. Выбор факторов и их кодирование
- •2.2 Выбор модели
- •2.3. Полный факторный эксперимент
- •2.4 Проведение опытов
- •2.5 Крутое восхождение по поверхности отклика
- •2.6 Дробный факторный эксперимент
- •3.Планирование и реализация многофакторного эксперимента второго порядка.
- •3.1 Центральные композиционные планы
- •3.2. Ортогональные планы
- •3.3 Ротатабельное планирование
- •3.4. Исследование области оптимума, представленной полиномом второй степени
- •3.5 Применение плана второго порядка для исследования аэродинамических потоков, генерируемых дискретными шлифовальными кругами
- •4.Применение планирования экспериментов при механической обработке материалов
- •4.1 Исследование шероховатости поверхности с использованием ротатабельного планирования
- •4.2 Оптимизация геометрии режущего инструмента на основе метода крутого восхождения по поверхности отклика.
- •4.3. Применение ротатабельного планирования второго порядка для исследования процесса торцового фрезерования
- •4.4. Составление композиционного плана проведения экспериментов при анализе параметров процесса шлифования
- •4.5. Исследование шероховатости поверхности, обработанной хонингованием
- •4.6. Исследование температуры, возникающей в зоне резания
- •Приложение. Таблицы математической статистики.
- •Значение g – критерия Кохрена
- •Значения критерия (k – число степеней свободы)
- •Список литературы
- •600000, Г. Владимир, ул. Горького, 87
2. Планирование и реализация полного факторного эксперимента
2.1. Выбор факторов и их кодирование
В качестве факторов рекомендуется выбирать такие независимые переменные величины, которые оказывают наибольшее влияние на параметры оптимизации и отвечают выше сформулированным требованиям. На начальной стадии исследований экспериментатор не знает, какие независимые переменные, подаваемые на вход того или иного процесса, в наибольшей степени влияют на его протекание. Поэтому ему следует воспользоваться априорной информацией, содержащейся в научно-технической, справочной литературе, диссертациях и других публикациях предшественников. Если в указанных источниках такой информации не существует, то возможен опрос ученых и специалистов, работающих в данной области.
В случае исследования принципиально нового, ранее неизвестного процесса, явления или устройства при отсутствии какой-либо априорной информации экспериментатору следует прибегнуть к проведению предварительных однофакторных экспериментов, целью которых является выявление доминирующих факторов процесса и характера зависимости, связывающей тот или иной фактор с тем или иным параметром процесса.
После обоснованного выбора параметров оптимизации и факторов устанавливают уровни и интервалы варьирования факторов, при этом необходимо определить какие пределы изменения факторов допускает экспериментальная установка, какой характер изменения факторов возможен (дискретный или непрерывный). Верхний и нижний уровни необходимо устанавливать таким образом, чтобы оставался запас варьирования фактора для возможного расширения (увеличения и уменьшения) факторного пространства при необходимости проведения серии дополнительных опытов в случае неадекватности модели, полученной на первой стадии экспериментальных исследований.
Оперирование абсолютными значениями факторов усложняет статистическую обработку результатов многофакторных экспериментов, поэтому для упрощения этой процедуры факторы необходимо закодировать. В кодированном виде верхний уровень обозначают +1, нижний – 1, а основной – 0.
Натуральное значение фактора – это численное значение фактора в абсолютных единицах измерения (например, скорость подачи S режущего инструмента, измеряемая в мм/об; глубина резания t, измеряемая в мм и т.д.). Натуральное значение факторов необходимо закодировать, при этом оперирование с кодовыми обозначениями факторов упрощает вычисления при обработке экспериментальных данных. Факторы кодируют в соответствии с формулой
,
(2.2)
где Н – натуральное значение фактора; ОУ – основной уровень фактора; ИВ – интервал варьирования фактора
Пример 1.
Требуется закодировать абсолютные численные значения скорости подачи режущего инструмента S, если верхний уровень этого фактора ВУ=1,5мм/об, а нижний уровень НУ=0,5мм/об.
Находим основной уровень (ОУ) фактора и интервал варьирования (ИВ) в абсолютном выражении
.
(2.3)
Подставляем в выражение (2.2) численные значения основного уровня (ОУ) и интервала варьирования (ИВ) фактора «скорость подачи», определяемые по выражению (2.3), при этом одновременно заменяем обозначение натурального значения Н на конкретное обозначение скорости подачи S. В результате получим выражение для кодирования первого фактора S(X1)
.
(2.4)
Подставляя поочередно в выражение (2.4) вместо S численные значения верхнего, нижнего и основного уровней, получим кодовые значения скорости подачи для названных уровней
.
Пример 2.
Требуется закодировать абсолютные численные значения глубины резания t, если верхний уровень этого фактора ВУ = 3,5мм, а нижний уровень НУ = 0,5мм.
Поступая аналогично первому примеру, получим:
.
На основании изложенной методики выполняют не только кодирование факторов, но и перевод уравнения регрессии с кодовыми обозначениями факторов к уравнению регрессии, содержащему натуральные значения факторов.