
- •1) Каскадные аср. Пример каскадных аср. Особенности расчета.
- •6) Основные понятия систем управления и автоматизации. Постановка задачи управления и регулирования.
- •7) Основные свойства объектов управления. Оптимальные переходные процессы.
- •15) Аср с дополнительным импульсом по производной.
- •16) Взаимосвязанные системы регулирования
- •17) Многоконтурные аср. Комбинированные аср.
- •18) Системы несвязанного регулирования.
- •19) Автоматические системы управления класификация. Основные функциональные части асуп
- •20) Гибкие автоматизированные производства в химической технологии. Использование нечеткой логики при их управлении
- •21) Динамические свойства измерительных преобразователей основных параметров средств измерения Электрические средства измерения
- •Средства измерения температуры
- •Средства измерения расхода
- •Средства измерения состава и концентрации
- •22) Задачи в области автоматизации технологических процессов химических производств отрасли. Особенности автоматизации химической промышленности
- •24) Одноконтурные аср.
- •25) Основные показатели качества переходных процессов. Показатели качества автоколебательного процесса регулирования сар с регулятором релейного действия
- •Показатели качества процесса регулирования в сар с регулятором непрерывного действия
- •Динамический коэффициент регулирования в сар тп астатических объектов (объектов без самовыравнивания).
- •Перерегулирование.
- •Время регулирования.
- •Остаточное отклонение регулируемой величиныот заданного значения.
- •Обобщенная (интегральная) оценка качества переходного процесса регулирования.
- •26) Предприятие как объект управления. Показатели эффективности асуп. Синтез рациональной структуры.
- •Показатели количественные
- •Синтез рациональной структуры сар тп. Выбор типа и параметров настройки регулятора
- •28) Типы входных сигналов. Особенности регулирования объектов с переменными параметрами.
- •29) Характеристика производственного предприятия и производственного процесса. Предприятие как объект управления. Иерархия управления производственными предприятием.
- •33) Взаимосвязанные системы регулирования. Системы связного регулирования. Автономные аср.
17) Многоконтурные аср. Комбинированные аср.
Удовлетворительное качество регулирования в простейшей одноконтурной системе с использованием стандартных законов регулирования можно обеспечить лишь при благоприятных динамических характеристиках объекта. Однако большинству промышленных объектов химической технологии свойственны значительное чистое запаздывание и большие постоянные времени. В таких случаях даже при оптимальных настройках регуляторов одноконтурные АСР характеризуются большими динамическими ошибками, низкой частотой регулирования и длительными переходными процессами. Для повышения качества регулирования необходим переход от одноконтурных АСР к более сложным системам, использующим дополнительные (корректирующие) импульсы по возмущениям или вспомогательным выходным координатам. Такие системы кроме обычного стандартного регулятора содержат вспомогательные регулирующие устройства – динамические компенсаторы или дополнительные регуляторы.
Рис. 1.7. Пример комбинированной системы регулирования концентрации упаренного раствора:
1– регулятор состава; 2 – динамический компенсатор
В зависимости от характера корректирующего импульса различают следующие многоконтурные АСР: комбинированные, сочетающие обычный замкнутый контур регулирования с дополнительным каналом воздействия, по которому через динамический компенсатор вводится импульс по возмущению; каскадные – двухконтурные замкнутые АСР, построенные на базе двух стандартных регуляторов и использующие для регулирования кроме основной выходной координаты дополнительный промежуточный выход; с дополнительным импульсом по производной от промежуточной выходной координаты.
*****
Комбинированные системы регулирования применяют при автоматизации объектов, подверженных действию существенных контролируемых возмущений.
На рис. 1.7 приведен фрагмент функциональной схемы автоматизации выпарной установки, в которой одним из наиболее сильных возмущений является расход питания. Основная задача регулирования – стабилизация концентрации упаренного раствора за счет изменения расхода греющего пара – выполняется регулятором 1. Кроме сигнала регулятора, на клапан, регулирующий подачу пара, через динамический компенсатор 2 поступает корректирующий импульс по расходу питания.
Рис. 1.8. Пример комбинированной системы регулирования состава дистиллята:
1 – подогреватель исходной смеси; 2 – ректификационная колонна; 3 – дефлегматор; 4 – флегмовая емкость; 5 – регулятор состава; 6 – динамический компенсатор
На рис. 1.8 приведен пример комбинированной АСР состава дистиллята в ректификационной колонне. Стабилизация состава дистиллята обеспечивается регулятором 5 путем изменения подачи флегмы на орошение колонны. Для повышения качества регулирования в системе предусмотрена автоматическая коррекция задания регулятору 5 в зависимости от одного из основных возмущений в процессе – расхода разделяемой смеси. Корректирующий импульс на задание регулятору поступает через динамический компенсатор 6.
Рассмотренные примеры иллюстрируют два способа построения комбинированных АСР. Обе системы регулирования обладают общими особенностями: наличием двух каналов воздействия на выходную координату объекта и использованием двух контуров регулирования – замкнутого (через регулятор 1) и разомкнутого (через компенсатор 2). Отличие состоит лишь в том, что во втором случае корректирующий импульс от компенсатора поступает не на вход объекта, а на вход регулятора.
Введение корректирующего импульса по наиболее сильному возмущению позволяет существенно снизить динамическую ошибку регулирования при условии правильного выбора и расчета динамического устройства, формирующего закон изменения этого воздействия.
Основой расчета подобных систем является принцип инвариантности: отклонение выходной координаты системы от заданного значения должно быть тождественно равным нулю при любых задающих или возмущающих воздействиях.
Для выполнения принципа инвариантности необходимы два условия: идеальная компенсация всех возмущающих воздействий и идеальное воспроизведение сигнала задания. Очевидно, что достижение абсолютной инвариантности в реальных системах регулирования практически невозможно. Обычно ограничиваются частичной инвариантностью по отношению к наиболее опасным возмущениям. Рассмотрим условие инвариантности разомкнутой и комбинированной систем регулирования по отношению к одному возмущающему воздействию.
Условие инвариантности разомкнутой и комбинированной АСР. Рассмотрим условие инвариантности разомкнутой системы (рис. 1.11): y(t)=0.
Рис. 1.9. Структурные схемы комбинированной АСР при подключении выхода компенсатора на вход объекта: а – исходная схема; б – преобразованная схема; 1 – регулятор; 2 – компенсатор
Рис. 1.10. Структурные схемы комбинированной АСР при подключении выхода компенсатора на вход регулятора: а – исходная схема; б – преобразованная схема; 1 –регулятор; 2 – компенсатор
Рис. 1.11. Структурная схема разомкнутой АСР.
Переходя к изображениям по Лапласу Хв(р) и Y(p) сигналов Хв(t) и Y(t), перепишем это условие с учетом передаточных функций объекта по каналам возмущения Wв(p) и регулирования Wp(p) и компенсатора Рк(р)
При наличии возмущения [Хв(р)=0] условие инвариантности (1.19) выполняется, если
откуда
Таким образом, для обеспечения инвариантности системы регулирования по отношению к какому-либо возмущению необходимо установить динамический компенсатор, передаточная функция которого равна отношению передаточных функций объекта по каналам возмущения и регулирования, взятому с обратным знаком.
Выведем условия инвариантности для комбинированных АСР. Для случая, когда сигнал от компенсатора подается на вход объекта (см. рис. 1.9, а), структурная схема комбинированной АСР преобразуется к последовательному соединению разомкнутой системы и замкнутого контура (см. рис. 1.9, б), передаточные функции которых соответственно равны:
При этом условие инвариантности (1.19) записывается в виде
Если должно выполняться условие
т. е. условие инвариантности (1.19 а).