Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Многомерные методы.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
140.8 Кб
Скачать

Роль математических методов в любой области знания (не только в психологии) — представление эмпирических данных в пригодном для интерпретации виде, поиск смысла в исходной эмпирической информации.

Наследов А. Д. вводит понятие эмпирической математической модели (ЭММ), которые идентичны мыслительным операциям. Эти модели он называет описательными, так как они представляют данные, полученные в исследовании, в удобном для интерпретации виде. Простейшие ЭММ — это, например, средние арифметические значения, вычисляемые для сравниваемых выборок в предположении, что различия в средних отражают различия между представителями групп (напомним, что среднее арифметическое значение отражает тенденцию выраженности свойства в выборке); ранжирование членов группы, которое предполагает, что порядковый номер испытуемого в группе (ранг) отражает выраженность изучаемого свойства; коэффициент корреляции между двумя признаками отражает взаимосвязь между ними, при этом мы исходим из предположения о согласованности индивидуальной изменчивости признаков и т.п.

Непосредственно сравнивать, различать, определять взаимосвязь и т.д. мы можем только при небольшой численности испытуемых и признаков. В других случаях, при небольшом числе испытуемых и признаков, мы пользуемся для расчетов калькулятором. Когда выборка большого объема и каждый испытуемый описан большим числом признаков, простейшие ЭММ мало пригодны, тогда возникает необходимость применения многомерных методов анализа и компьютера.

Многомерные методы анализа — дальнейшее развитие ЭММ в отношении многостороннего описания изучаемых явлений. Как и простейшие ЭММ, они воспроизводят мыслительные операции человека, но в отношении таких данных, непосредственное осмысление которых невозможно в силу нашей природной ограниченности. Программные реализации многомерных методов анализа относятся к области искусственного интеллекта. Многомерные методы выполняют такие интеллектуальные функции, как структурирование эмпирической информации, классификация, экстраполяция, распознавание образов и т.д.

К наиболее часто употребляемым в психологии многомерным методам анализа экспериментальных данных относятся множественный регрессионный анализ, дискриминантный анализ, кластерный анализ, факторный анализ, многомерное шкалирование и др. Эти методы можно классифицировать по трем основаниям:

А) интеллектуальная операция (или способ преобразования исходной информации) — по назначению метода;

Б) по способу сопоставления данных — по сходству (различию) или пропорциональности (корреляции);

В) по виду исходных эмпирических данных.

I. Классификация методов по назначению:

  1. Методы предсказания (экстраполяции): множественный регрессионный и дискриминантный анализ. Множественный регрессионный анализ пред­сказывает значения метрической «зависимой» переменной по множеству из­вестных значений «независимых» переменных, измеренных у множества объектов (испытуемых). Дискриминантный анализ предсказывает принадлеж­ность объектов (испытуемых) к одному из известных классов (номинативной шкале) по измеренным метрическим (дискриминантным) переменным.

  2. Методы классификации: варианты кластерного анализа и дискриминан­тный анализ. Кластерный анализ («классификация без обучения») по изме­ренным характеристикам у множества объектов (испытуемых) либо по данным об их попарном сходстве (различии) разбивает это множество объектов на группы, в каждой из которых содержатся объекты, более похожие друг на друга, чем на объекты из других групп. Дискриминантный анализ («класси­фикация с обучением», «распознавание образов») позволяет классифицировать объекты по известным классам, исходя из измеренных у них признаков, пользуясь решающими правилами, выработанными предварительно на выборке идентичных объектов, у которых были измерены те же признаки.

  3. Структурные методы: факторный анализ и многомерное шкалирование. Факторный анализ направлен на выявление структуры переменных как совокупности факторов, каждый из которых — это скрытая, обобщающая при­ чина взаимосвязи группы переменных. Многомерное шкалирование выявляет шкалы как критерии, по которым поляризуются объекты при их субъек­тивном попарном сравнении.

II. Классификация методов по исходным предположениям о структуре данных:

  1. Методы, исходящие из предположения о согласованной изменчивости признаков, измеренных у множества объектов: факторный анализ, множе­ственный регрессионный анализ, отчасти — дискриминантный анализ.

  2. Методы, исходящие из предположения о том, что различия между объек­тами можно описать как расстояние между ними. На дистантной модели ос­нованы кластерный анализ и многомерное шкалирование, частично — дис­криминантный анализ. Многомерное шкалирование и дискриминантный анализ добавляют предположение о том, что исходные различия между объек­тами можно представить как расстояния между ними в пространстве неболь­шого числа шкал (функций).

III. Классификация методов по виду исходных данных:

  1. Методы, использующие в качестве исходных данных только признаки, измеренные у группы объектов. Это множественный регрессионный анализ, дискриминантный анализ и факторный анализ.

  2. Методы, исходными данными для которых могут быть попарные сход­ства (различия) между объектами: это кластерный анализ и многомерное шкалирование. Многомерное шкалирование, кроме того, может анализировать данные о попарном сходстве между совокупностью объектов, оценен­ном группой экспертов. При этом совместно анализируются как различия между объектами, так и индивидуальные различия между экспертами.

Представленные классификации свидетельствуют о необходимости зна­ний многомерных методов, их возможностей и ограничений уже на стадии общего замысла исследования. Например, ориентируясь только на фактор­но-аналитическую модель, исследователь ограничен в выборе процедуры ди­агностики: она должна состоять в измерении признаков у множества объек­тов. При этом исследователь ограничен и в направлении поиска: он изучает либо взаимосвязи между признаками, либо межгрупповые различия по изме­ряемым признакам. Общая осведомленность о других многомерных методах позволит исследователю использовать более широкий круг психодиагности­ческих процедур, решать более широкий спектр не только научных, но и прак­тических задач.

Применение многомерных методов требует, разумеется, не только самого компьютера, но и соответствующего программного обеспечения. Широко известны и распространены универсальные статистические программы SТАТISТIСА и SPSS, содержащие практически весь спектр статистических методов — от простейших до самых современных. Наследов А. Д. пишет о том, что он разделяет мнение, что программа SТАТISТIСА обладает прекрасной графикой и гибкостью в обра­ботке данных. Однако программа SPSS имеет свои преимущества: она не толь­ко проще в освоении и применении, но и включает в себя ряд методов, отсут­ствующих в SТАТISТIСА, например, варианты многомерного шкалирования.

Множественный регрессионный анализ

Назначение метода:

1) изучение взаимосвязи одной переменной («зависимой», результирующей) от нескольких других («независимых», исходных);

2) выявление среди «независимых» переменных наиболее существенных, важных для предсказания «зависимой», а также тех, которыми можно пренебречь, исключить в дальнейшем их из анализа.

Обычно множественный регрессионный анализ (МРА) применяется для изучения возможности предсказания некоторого результата (обучения, деятельности) по ряду предварительно измеренных характеристик. При этом предполагается, что связь между значениями метрической «зависимой» переменной Y и несколькими «независимыми» переменными X, измеренных у множества объектов (испытуемых), можно выразить линейным уравнением:

Y = b + b1x1 + b2x2 + … + bрxр + e,

где Y — зависимая переменная; x1, x2, …. xр — независимые переменные; b, b1, b2, … bр — параметры модели; e — ошибка предсказания.

Требования к исходным данным:

1) Строгих указаний о соотношении количества испытуемых N и количества признаков m нет, но в некоторых источниках рекомендуется следующее соотношение N>m в 3 раза.

2) Признаки должны быть измерены по количественным шкалам (интервальной или пропорциональной) и иметь нормальное распределение.

3) Для анализа отбираются независимые переменные сильно коррелирующие с зависимой и слабо — друг с другом.

Дискриминантный анализ («классификация с обучением») предсказывает принадлежность объектов (испытуемых) к одному из известных классов (шкала наименований) по измеренным метрическим (дискриминантным) переменным. Дискриминантные переменные должны быть измерены в количественной шкале, зависимая переменная — в шкале наименований. Рекомендуется двукратное превышение числа испытуемых над числом переменных.

Требования к исходным данным:

1) В отношении количества признаков m строгих ограничений нет, но часто рекомендуется следующее соотношение количества испытуемых N и количества признаков m: N>m в 2 раза.

2) Признаки должны быть измерены по количественным шкалам ( интервальной или пропорциональной) и иметь нормальное распределение.

3) Между переменными должны отсутствовать линейные зависимости (коэффициенты корреляции, близкие к 1,00).

Кластерный анализ («классификация без обучения») по измеренным характеристикам у множества объектов (испытуемых) либо по данным об их попарном сходстве (различии) разбивает это множество объектов на группы, в каждой из которых находятся объекты, более похожие друг на друга, чем на объекты других групп.

Требования к исходным данным: Ограничений в использовании нет. Может применяться даже для признаков, измеренных по шкале наименований, лишь бы между ними возможно было определить сходство/различие.

Многомерное шкалирование выявляет шкалы как критерии, по которым поляризуются объекты при их субъективном попарном сравнении.

Факторный анализ направлен на выявление структуры переменных как совокупности факторов, каждый из которых — это скрытая, обобщающая причина взаимосвязи группы переменных. Надежные результаты получаются, если переменные измерены в количественной шкале. Число испытуемых должно превышать число переменных (или, по крайней мере, должно быть равно ему).

Требования к исходным данным:

1) Признаки должны быть измерены по количественным шкалам ( интервальной или пропорциональной) и иметь нормальное распределение. Включение в анализ порядковых или бинарных данных допустимо, но исследователь должен отдавать себе отчет в том, что искажения факторной структуры будут соответствовать искажениям коэффициентов корреляций и характер искажений неизвестен. В общем случае — желательно перейти к единой шкале для всех признаков (либо ранговой, либо бинарной), затем вычислять матрицу интеркорреляций, выбирая соответствующие меры взаимосвязи.

2) Соотношение количества признаков m и количества испытуемых N зависит от целей исследования.

А) Если цель анализа — уменьшение исходного количества переменных путем перехода к новым переменным-факторам, то строгих ограничений нет. Желательно лишь, чтобы N было не меньше m.

Б) Если исследователь хочет обнаружить и обосновать наличие факторов за взаимосвязями признаков, то N должно быть больше m не менее чем в 3 раза.

В) Если исследователь хочет обосновать существование выявленной факторной структуры для генеральной совокупности, то испытуемых N должно быть еще больше.

3) Недопустимы функциональные зависимости между признаками и не желательны корреляции, близкие к 1,00.

Возникновение и развитие факторного анализа тесно связано с измерени­ями в психологии. Длительное время факторный анализ и воспринимался как математическая модель в психологической теории интеллекта. Лишь начи­ная с 50-х годов XX столетия, одновременно с разработкой математического обоснования факторного анализа, этот метод становится общенаучным. К на­стоящему времени факторный анализ является неотъемлемой частью любой серьезной статистической компьютерной программы и входит в основной инструментарий всех наук, имеющих дело с многопараметрическим описа­нием изучаемых объектов, таких, как социология, экономика, биология, ме­дицина и другие.

Основная идея факторного анализа была сформулирована еще Ф. Гальтоном, ос­новоположником измерений индивидуальных различий. Она сводится к тому, что если несколько признаков, измеренных на группе индивидов, изменяются согла­сованно, то можно предположить существование одной общей причины этой со­вместной изменчивости — фактора как скрытой (латентной), непосредственно не доступной измерению переменной. При этом фактор является скрытой причиной согласованной изменчивости наблюдаемых переменных

Далее К. Пирсон в 1901 году выдвигает идею «метода главных осей», а Ч. Спирмен, отстаивая свою однофакторную концепцию интеллекта, разрабатывает математический аппарат для оценки этого фактора, ис­ходя из множества измерений способнос­тей. В своей работе, опубликованной в 1904 году, Ч. Спирмен показал, что если ряд признаков попарно коррелируют друг с другом, то может быть составлена система линей­ных уравнений, связывающих все эти при­знаки, один общий фактор «общей ода­ренности» и по одному специфическому фактору «специальных способностей» для каждой переменной. В 1930-х годах Л. Терстоун впервые предлагает «многофакторный анализ» для описания многочислен­ных измеренных способностей меньшим числом общих факторов интеллекта, яв­ляющихся линейной комбинацией этих исходных способностей.

С 1950-х годов, с появлением компьютеров, факторный анализ начинает очень широко использоваться в психологии при разработке тестов, обоснования струк­турных теорий интеллекта и личности. При этом исследователь начинает с множе­ства измеренных эмпирических показателей, которые при помощи факторного анализа группируются по факторам (изучаемым свойствам). Факторы получают интерпретацию по входящим в них переменным, затем отбираются наиболее «ве­сомые» показатели этих факторов, отсеиваются малозначимые переменные, вы­числяются значения факторов для испытуемых и сопоставляются с внешними эм­пирическими показателями изучаемых свойств.

В дальнейшем, по мере развития математического обеспечения факторного анали­за, накопления опыта его использования, прежде всего в психологии, задача фак­торного анализа обобщается. Как общенаучный метод, факторный анализ стано­вится средством для замены набора коррелирующих измерений существенно меньшим числом новых переменных (факторов). При этом основными требовани­ями являются: а) минимальная потеря информации, содержащейся в исходных дан­ных, и б) возможность представления (интерпретации) факторов через исходные переменные.

Таким образом, главная цель факторного анализауменьшение размерно­сти исходных данных с целью их экономного описания при условии мини­мальных потерь исходной информации. Результатом факторного анализа является переход от множества исходных переменных к существенно мень­шему числу новых переменных — факторов. Фактор при этом интерпретиру­ется как причина совместной изменчивости нескольких исходных перемен­ных.

Если исходить из предположения о том, что корреляции могут быть объ­яснены влиянием скрытых причин — факторов, то основное назначение фак­торного анализа — анализ корреляций множества признаков.

Рассмотрим результаты факторного анализа на простом примере. Предположим, исследователь измерил на выборке из 50 испытуемых 5 показателей интеллекта: счет в уме, продолжение числовых рядов, осведомленность, словарный запас, установ­ление сходства. Все показатели статистически значимо взаимосвязаны на уровне р < 0,05, кроме показателя № 4 с № 1 и 2 (табл. 1).

Таблица 1