
- •Классификация электрических сетей
- •Назначение, область применения
- •Масштабные признаки, размеры сети
- •Род тока
- •Принципы работы
- •Классы напряжения
- •Преобразование напряжения
- •Структура сети
- •Трёхфазная система электроснабжения
- •Описание
- •Преимущества
- •Схемы соединений трехфазных цепей Звезда
- •Соотношение между линейными и фазными токами и напряжениями
- •Мощность трёхфазного тока
- •Последствия отгорания (обрыва) нулевого провода в трехфазных сетях.
- •Проблема гармоник, кратных третьей
- •Математические расчёты
- •Типовые оценки качества электропотребления
- •Несинусоидальность
- •Коррекция коэффициента мощности
- •Разновидности коррекции коэффициента мощности
- •Типы устройств по назначению:
- •Комплексные трансформаторные подстанции.
- •Комплексные распределительные устройства.
- •Режимы работы нейтралей в электроустановках
- •Общие сведения об электроустановках
- •1.1. Годовой график нагрузок по продолжительности
- •1.2. Режимы работы нейтралей в электроустановках в сетях 6, 10, 35 кВ
- •Силовой трансформатор
- •Компоненты трансформатора Выводы трансформатора
- •Охладители
- •Оборудование для регулирования напряжения
- •Навесное оборудование Газовое реле
- •Индикация температуры
- •Встроенные трансформаторы тока
- •Поглотители влаги
- •Устройства непрерывной регенерации масла
- •Системы защиты масла
- •Указатели уровня масла
- •Устройства сброса давления
- •Устройства защиты от внезапного повышения давления
- •Устройства защиты от повреждений
- •Колеса/полозья для транспортировки
- •Детектор горючих газов
- •Расходомер
- •Габариты трансформаторов
- •Условное обозначение трансформаторов
- •Электродвигатель постоянного тока
- •Содержание
- •История
- •Описание коллекторного дпт
- •Статор (индуктор)
- •Ротор (якорь)
- •Коллектор
- •Принцип работы
- •Две рамки с током в однородном магнитном поле полюсов статора
- •Рамка с током, в неоднородном магнитном поле полюсов статора
- •Две рамки с током, в неоднородном магнитном поле полюсов статора
- •Взаимодействие магнитных полей
- •Классификация
- •Разновидности Коллекторные, с щёточноколлекторным переключателем тока
- •Бесколлекторные, с электронным переключателем тока
- •Другие виды электродвигателей постоянного тока
- •Управление
- •Механическая характеристика
- •Регулировочная характеристика
- •Применение
- •Достоинства и недостатки
- •Двигатели последовательного возбуждения
- •. Способы возбуждения двигателей постоянного тока
- •Двигатель с независимым возбуждением.
- •Двигатель с последовательным возбуждением.
- •Двигатель со смешанным возбуждением.
- •Синхронный двигатель, принцип действия и устройство синхронного двигателя
- •Короткие замыкания
- •Виды коротких замыканий
- •Причины возникновения коротких замыканий
- •Последствия коротких замыканий
- •Цели расчетов коротких замыканий
- •Порядок расчетов коротких замыканий
- •Расчет трехфазного короткого замыкания
- •Назначение релейной защиты.
- •Релейная защита область применения
- •Общие требования
- •Защита турбогенераторов, работающих непосредственно на сборные шины генераторного напряжения
- •Защита трансформаторов (автотрансформаторов) с обмоткой высшего напряжения 3 кВ и выше и шунтирующих реакторов 500 кВ
- •Защита блоков генератор - трансформатор
- •Защита воздушных и кабельных линий в сетях напряжением 3-10 кВ с изолированной нейтралью
- •Защита воздушных и кабельных линий в сетях напряжением 20 и 35 кВ с изолированной нейтралью
- •Защита воздушных линий в сетях напряжением 110-500 кВ с эффективно заземленной нейтралью
- •Защита шин, защита на обходном, шиносоединительном и секционном выключателях
- •Защита синхронных компенсаторов
Математические расчёты
Треугольник мощностей
Коэффициент мощности необходимо учитывать при проектировании электросетей. Низкий коэффициент мощности ведёт к увеличению доли потерь электроэнергии в электрической сети в общих потерях. Чтобы увеличить коэффициент мощности, используют компенсирующие устройства. Неверно рассчитанный коэффициент мощности может привести к избыточному потреблению электроэнергии и снижению КПД электрооборудования, питающегося от данной сети.
Для расчётов в случае гармонических переменных U (напряжение) и I (сила тока) используются следующие математические формулы:
Здесь
—
активная мощность,
—
полная мощность,
—
реактивная мощность.
Типовые оценки качества электропотребления
При одной и той же активной мощности нагрузки мощность, бесполезно рассеиваемая на проводах, обратно пропорциональна квадрату коэффициента мощности. Таким образом, чем меньше коэффициент мощности, тем ниже качество потребления электроэнергии. Для повышения качества электропотребления применяются различные способы коррекции коэффициента мощности, то есть его повышения до значения, близкого к единице.
Значение коэффициента мощности |
Высокое |
Хорошее |
Удовлетворительное |
Низкое |
Неудовлетворительное |
cos φ |
0,95…1 |
0,8…0,95 |
0,65…0,8 |
0,5…0,65 |
0…0,5 |
λ |
95…100 % |
80…95 % |
65…80 % |
50…65 % |
0…50 % |
Например, большинство компактных люминесцентных («энергосберегающих») ламп, имеющих ЭПРА, характеризуются высоким его значением.
Несинусоидальность
Несинусоидальность — вид нелинейных искажений напряжения в электрической сети, который связан с появлением в составе напряжения гармоник с частотами, многократно превышающими основную частоту сети. Высшие гармоники напряжения оказывают отрицательное влияние на работу системы электроснабжения, вызывая дополнительные активные потери в трансформаторах, электрических машинах и сетях; повышенную аварийность в кабельных сетях; уменьшение коэффициента мощности за счёт мощности искажения, вызванной протеканием токов высших гармоник; а также ограниченное применение батарей конденсаторов для компенсации реактивной мощности.
Источниками высших гармоник тока и напряжения являются электроприёмники с нелинейными нагрузками. Например, мощные выпрямители переменного тока, применяемые в металлургической промышленности и на железнодорожном транспорте, газоразрядные лампы и др.
Коррекция коэффициента мощности
Коррекция коэффициента мощности при помощи конденсаторов
Коррекция коэффициента мощности ((англ. power factor correction) PFC) — процесс приведения потребления конечного устройства, обладающего низким коэффициентом мощности при питании от силовой сети переменного тока, к состоянию, при котором коэффициент мощности соответствует принятым стандартам.
Технически реализуется в виде той или иной дополнительной схемы на входе устройства.
Данная процедура обязательна для импульсных источников питания мощностью в 100 и более ватт[источник не указан 858 дней], необходимая для равномерного использования мощности фазы и исключения перегрузки нейтрального провода трёхфазной сети. Компенсация обеспечивает отсутствие всплесков тока потребления на вершине синусоиды питающего напряжения и равномерную нагрузку на силовую линию.