
- •Классификация электрических сетей
- •Назначение, область применения
- •Масштабные признаки, размеры сети
- •Род тока
- •Принципы работы
- •Классы напряжения
- •Преобразование напряжения
- •Структура сети
- •Трёхфазная система электроснабжения
- •Описание
- •Преимущества
- •Схемы соединений трехфазных цепей Звезда
- •Соотношение между линейными и фазными токами и напряжениями
- •Мощность трёхфазного тока
- •Последствия отгорания (обрыва) нулевого провода в трехфазных сетях.
- •Проблема гармоник, кратных третьей
- •Математические расчёты
- •Типовые оценки качества электропотребления
- •Несинусоидальность
- •Коррекция коэффициента мощности
- •Разновидности коррекции коэффициента мощности
- •Типы устройств по назначению:
- •Комплексные трансформаторные подстанции.
- •Комплексные распределительные устройства.
- •Режимы работы нейтралей в электроустановках
- •Общие сведения об электроустановках
- •1.1. Годовой график нагрузок по продолжительности
- •1.2. Режимы работы нейтралей в электроустановках в сетях 6, 10, 35 кВ
- •Силовой трансформатор
- •Компоненты трансформатора Выводы трансформатора
- •Охладители
- •Оборудование для регулирования напряжения
- •Навесное оборудование Газовое реле
- •Индикация температуры
- •Встроенные трансформаторы тока
- •Поглотители влаги
- •Устройства непрерывной регенерации масла
- •Системы защиты масла
- •Указатели уровня масла
- •Устройства сброса давления
- •Устройства защиты от внезапного повышения давления
- •Устройства защиты от повреждений
- •Колеса/полозья для транспортировки
- •Детектор горючих газов
- •Расходомер
- •Габариты трансформаторов
- •Условное обозначение трансформаторов
- •Электродвигатель постоянного тока
- •Содержание
- •История
- •Описание коллекторного дпт
- •Статор (индуктор)
- •Ротор (якорь)
- •Коллектор
- •Принцип работы
- •Две рамки с током в однородном магнитном поле полюсов статора
- •Рамка с током, в неоднородном магнитном поле полюсов статора
- •Две рамки с током, в неоднородном магнитном поле полюсов статора
- •Взаимодействие магнитных полей
- •Классификация
- •Разновидности Коллекторные, с щёточноколлекторным переключателем тока
- •Бесколлекторные, с электронным переключателем тока
- •Другие виды электродвигателей постоянного тока
- •Управление
- •Механическая характеристика
- •Регулировочная характеристика
- •Применение
- •Достоинства и недостатки
- •Двигатели последовательного возбуждения
- •. Способы возбуждения двигателей постоянного тока
- •Двигатель с независимым возбуждением.
- •Двигатель с последовательным возбуждением.
- •Двигатель со смешанным возбуждением.
- •Синхронный двигатель, принцип действия и устройство синхронного двигателя
- •Короткие замыкания
- •Виды коротких замыканий
- •Причины возникновения коротких замыканий
- •Последствия коротких замыканий
- •Цели расчетов коротких замыканий
- •Порядок расчетов коротких замыканий
- •Расчет трехфазного короткого замыкания
- •Назначение релейной защиты.
- •Релейная защита область применения
- •Общие требования
- •Защита турбогенераторов, работающих непосредственно на сборные шины генераторного напряжения
- •Защита трансформаторов (автотрансформаторов) с обмоткой высшего напряжения 3 кВ и выше и шунтирующих реакторов 500 кВ
- •Защита блоков генератор - трансформатор
- •Защита воздушных и кабельных линий в сетях напряжением 3-10 кВ с изолированной нейтралью
- •Защита воздушных и кабельных линий в сетях напряжением 20 и 35 кВ с изолированной нейтралью
- •Защита воздушных линий в сетях напряжением 110-500 кВ с эффективно заземленной нейтралью
- •Защита шин, защита на обходном, шиносоединительном и секционном выключателях
- •Защита синхронных компенсаторов
Двигатель со смешанным возбуждением.
На каждом полюсе такого двигателя имеются две обмотки – параллельная и последовательная. Их можно включить так, чтобы магнитные потоки складывались (согласное включение) или вычитались (встречное включение). Формулы для скорости вращения и вращающего момента для такого двигателя:
n = (U – Iя ∙ Rя ) / c∙( Φпарал. +/- Φпосл.)
М = c ∙ Iя ∙ (Φпарал. +/- Φпосл.)
В зависимости от соотношения магнитных потоков двигатель со смешанным возбуждением по своим свойствам приближается либо к двигателю с последовательным возбуждением, либо к двигателю с параллельным возбуждением. Как правило, у таких двигателей последовательная обмотка является главной (рабочей), а параллельная – вспомогательной. Благодаря наличию магнитного потока параллельной обмотки, скорость такого двигателя не может сильно возрастать на малых нагрузках. Двигатели с согласным включением применяются, когда необходим большой пусковой момент и регулировка скорости при переменных нагрузках. Двигатели со встречным включением обмоток применяются в тех случаях, когда необходима постоянная скорость при изменяющейся нагрузке.
Для изменения направления вращения двигателя постоянного тока надо изменить направление тока либо в обмотке возбуждения, либо в обмотке якоря. Изменением полярности на клеммах машины можно поменять направление вращения только в двигателе с постоянным магнитом или независимым возбуждением. В других двигателях надо изменить направление тока либо в якорной обмотке, либо в обмотке возбуждения. Двигатель постоянного тока нельзя включать подсоединением полного напряжения. Пусковой ток машин постоянного тока где-то в 20 раз превышает номинальный ток (он тем больше, чем больше и быстрее мотор). В больших машинах пусковой ток может превышать номинальный ток в 50 раз.
Большой ток вызывает в коллекторе круговое искрение и разрушает коллектор. Для включения применяют плавное увеличение напряжения или пусковые реостаты. Прямое включение допускается при низких напряжениях в случае маленьких двигателей, у которых сопротивление обмотки якоря большое.
Режимы работы трехобмоточных автотрансформаторов |
Автотрансформаторные режимы (рисунок 4.2а и б). Возможна
передача номинальной мощности
а поэтому последовательная и общая обмотки загружены типовой мощностью, что допустимо.
Рисунок 4.2. Схемы автотрансформаторных режимов работы АТ Трансформаторные режимы (рисунок 4.2 в, г). Возможна
передача мощности из обмотки НН в
обмотку СН или ВН, причём обмотку НН
можно загрузить не более чем на
Если
происходит трансформация
В трансформаторном режиме передачи мощности из обмотки НН в ВН (рисунок 4.2г), общая и последовательная обмотки загружены не полностью:
поэтому возможно дополнительно передать из обмотки СН в ВН некоторую мощность. Комбинированные режимы (рисунок 4.2 д,е.)
Рисунок 4.2. Схемы трансформаторных и комбинированных режимов работы автотрансформаторов. Передача мощности осуществляется автотрансформаторным путём ВН → СН и трансформаторным путём НН → СН (рисунок 4.2 д). Ток в последовательной обмотке:
где:
Нагрузка последовательной обмотки:
Отсюда
видно, что даже при передаче номинальной
мощности
Нагрузка
общей обмотки:
Подставляя значения токов и производя преобразования, получаем:
где:
Т.о. комбинированный режим НН-СН, ВН-СН ограничивается загрузкой общей обмотки и может быть допущен при условии:
Если
значения cos
В комбинированном режиме передачи мощности из обмоток НН и СН в обмотку ВН распределение токов показано на рисунке 4.2е. В общей обмотке ток АТ режима направлен встречно току трансформаторного режима, поэтому загрузка обмотки значительно меньше допустимой и в пределе может быть равна нулю. Этот режим ограничивается загрузкой последовательной обмотки:
где:
Рнв,
Qнв Комбинированный режим НН-ВН, СН-ВН допустим, если
Если значения cos на стороне СН и НН незначительно отличаются друг от друга то (4.11) упрощается
Возможны и другие комбинированные режимы передачи мощности из обмотки СН в обмотки НН и ВН. В этом случае направления токов в обмотках изменяются на обратные по сравнению с рис. 4.2 д, е; но приведенные рассуждения и формулы (4.8)-(4.13) останутся неизменными. Во всех случаях надо контролировать загрузку АТ, устанавливая трансформаторы тока (и амперметры) во всех обмотках. Допустимая нагрузка общей обмотки указывается в паспортных данных АТ. Выводы, сделанные для однофазного трансформатора справедливы и для трёхфазного трансформатора, схема которого представлена на рисунке 4.3. Обмотки ВН и СН соединяются в звезду с выведенной нулевой точкой, обмотки НН в треугольник. К особенностям конструкции АТ следует отнести необходимость глухого заземления нейтрали общей для обмотки ВН и СН.
Рисунок 4.3 Схема трехфазного автотрансформатора Объясняется это следующим: Если
в системе с эффективно заземленной
нейтралью включить понижающий АТ с
незаземлённой нейтралью, то при
замыкании на землю одной фазы в сети
СН на последовательную обмотку этой
фазы будет воздействовать полное
напряжение
Такие перенапряжения недопустимы, поэтому нейтрали всех АТ глухо заземляются. В этом случае заземления на линии со стороны ВН и СН не вызывают опасных перенапряжений, однако в системах ВН и СН возрастают токи однофазного КЗ. Преимущества АТ по сравнению с трансформатором той же мощности.
Недостатки АТ.
|