
- •1. Предмет статистической науки и задачи статистики на современном этапе
- •2. Статистическая совокупность, ее виды. Единицы совокупности и классификация их признаков.
- •3. Метод статистики и основные этапы статистического исследования.
- •4. Организация статистики в Республике Беларусь. Источники и способы получения статистической информации
- •5. Виды статистического наблюдения. Способы собирания статистических сведений
- •Виды статистического наблюдения по времени регистрации:
- •По полноте охвата единиц совокупности различают следующие виды статистического наблюдения:
- •7. Организационные вопросы плана статистического наблюдения.
- •8. Статистическая отчетность, принципы ее организации, программа и виды.
- •9.Переписи и другие виды специально организованных статистических наблюдений.
- •10.Погрешности (ошибки) статистического наблюдения. Методы проверки достоверности статистических данных.
- •12. Понятие о группировке, ее задачи и виды
- •13. Методологические вопросы построения группировок
- •15. .Ряды распределения, их виды и графическое изображение
- •16. Статистические таблицы, их виды и основные правила построения и оформления.
- •17. Статистические показатели и их классификация.
- •Различают показатель-категорию и конкретный статистический показатель:
- •По форме различают статистические показатели:
- •18. Абсолютные статистические величины, их виды, значение и единицы измерения.
- •19. . Относительные величины и область их применения. Способы их расчета и формы выражения.
- •20. Виды относительных величин
- •21. Понятие о статистическом графике, его основные элементы и правила построения.
- •22. Виды статистических графиков и область их применения
- •23. Сущность и значение средних величин. Основные научные положения теории средних. Определяющее свойство средней.
- •24. Средняя арифметическая, ее основные математические свойства и методы расчета. Средняя арифметическая простая
- •Средняя арифметическая взвешенная
- •25. Средняя гармоническая и другие виды средних. Обусловленность выбора средней характером исходной информации.
- •Формула средней гармонической:
- •Гармоническая простая
- •26. Мода и медиана, их смысл и значение в социально-экономических исследованиях, способы вычисления.
- •27. Статистическое изучение вариации. Показатели вариации и методы их расчета.
- •Абсолютные показатели вариации включают:
- •Размах вариации (r)
- •Среднее линейное и квадратическое отклонение
- •Среднее линейное отклонение простое:
- •Среднее квадратическое отклонение
- •Дисперсия
- •Относительные показатели вариации Относительные показатели вариации включают:
- •32. Сущность выборочного наблюдения и его теоретические основы.
- •33. Виды и способы отбора единиц в выборочную совокупность.
- •35. Определение необходимой численности (объема) выборки.
- •36. Способы распространения результатов выборочного наблюдения на генеральную совокупность. Практика применения выборочных исследований в статистике.
- •37. Понятие о рядах динамики, их виды и правила построения.
- •38. Аналитические показатели динамического ряда, способы их расчета и взаимосвязь.
- •39. Средние показатели динамического ряда и методы их расчета.
- •43. Сущность индексов, задачи, решаемые индексным методом и классификация индексов.
- •44. Индивидуальные и общие (сводные) индексы. Принципы построения системы взаимосвязанных агрегатных индексов.
- •45.Средние индексы и их виды
- •46. Индексный метод анализа динамики среднего уровня (индексы переменного, постоянного состава и структурных сдвигов).
- •48.Взаимосвязи индексов
- •49. Принципы построения многофакторных индексов.
- •50. Территориальные индексы
- •51. Измерение связей между социально-экономическими явлениями — важнейшая задача статистики. Формы и виды взаимосвязей
- •53. Понятие линейной корреляции. Нахождение параметров уравнения регрессии, линейный коэффициент корреляции.
- •54. Понятие криволинейной зависимости, оценка тесноты связи при криволинейной зависимости
- •55. Понятие о множественной корреляции
27. Статистическое изучение вариации. Показатели вариации и методы их расчета.
Вариация — это различия индивидуальных значений признака у единиц изучаемой совокупности. Исследование вариации имеет большое практическое значение и является необходимым звеном в экономическом анализе. Необходимость изучения вариации связана с тем, что средняя, являясь равнодействующей, выполняет свою основную задачу с разной степенью точности: чем меньше различия индивидуальных значений признака, подлежащих осреднению, тем однороднее совокупность, а, следовательно, точнее и надежнее средняя, и наоборот. Следовательно по степени вариации можно судить о границах вариации признака, однородности совокупности по данному признаку, типичности средней, взаимосвязи факторов, определяющих вариацию.
Изменение вариации признака в совокупности осуществляется с помощью абсолютных и относительных показателей.
Абсолютные показатели вариации включают:
размах вариации
среднее линейное отклонение
дисперсию
среднее квадратическое отклонение
Размах вариации (r)
Размах вариации — это разность между максимальным и минимальным значениями признака
Он показывает пределы, в которых изменяется величина признака в изучаемой совокупности.
Пример
Опыт работы у пяти претендентов на предшествующей работе составляет: 2,3,4,7 и 9 лет. Решение: размах вариации = 9 — 2 = 7 лет.
Для
обобщенной характеристики различий в
значениях признака вычисляют средние
показатели вариации, основанные на
учете отклонений от средней арифметической.
За отклонение от средней принимается
разность
.
При
этом во избежании превращения в нуль
суммы отклонений вариантов признака
от средней (нулевое свойство средней)
приходится либо не учитывать знаки
отклонения, то есть брать эту сумму по
модулю
,
либо возводить значения отклонений в
квадрат
Среднее линейное и квадратическое отклонение
Среднее линейное отклонение — это средняя арифметическая из абсолютных отклонений отдельных значений признака от средней.
Среднее линейное отклонение простое:
Опыт работы у пяти претендентов на предшествующей работе составляет: 2,3,4,7 и 9 лет.
В
нашем примере:
лет;
Ответ: 2,4 года.
Среднее линейное отклонение взвешенное применяется для сгруппированных данных:
Среднее линейное отклонение в силу его условности применяется на практике сравнительно редко (в частности, для характеристики выполнения договорных обязательств по равномерности поставки; в анализе качества продукции с учетом технологических особенностей производства).
Среднее квадратическое отклонение
Наиболее совершенной характеристикой вариации является среднее квадратическое откложение, которое называют стандартом (или стандартным отклонение). Среднее квадратическое отклонение ( ) равно квадратному корню из среднего квадрата отклонений отдельных значений признака от средней арифметической:
Среднее квадратическое отклонение простое:
Среднее квадратическое отклонение взвешенное применяется для сгруппированных данных:
Между средним квадратическим и средним линейным отклонениями в условиях нормального распределения имеет место следующее соотношение: ~ 1,25.
Среднее квадратическое отклонение, являясь основной абсолютной мерой вариации, используется при определении значений ординат кривой нормального распределения, в расчетах, связанных с организацией выборочного наблюдения и установлением точности выборочных характеристик, а также при оценке границ вариации признака в однородной совокупности.