
- •Содержание.
- •Ведение
- •Лекция №1 термодинамические и теплофизические свойства энергоносителей и материалов, применяемых в системах создания микроклимата в помещениях зданий.
- •1.1 Основные термодинамические понятия Параметры состояния и термодинамический процесс.
- •Первый закон термодинамики.
- •Универсальное уравнение состояния идеального газа.
- •Основные положения второго закона термодинамики.
- •Цикл и теоремы Карно.
- •Политропный процесс
- •Свойства реальных газов.
- •1.2 Термодинамические процессы водяного пара. Понятия о водяном паре
- •Процесс парообразования в координатах р—V.
- •Процесс парообразования в координатах I-s.
- •1.3 Термодинамические процессы влажного воздуха.
- •Теплофизические свойства теплоносителей. Теплоносители.
- •Санитарно-гигиенические требования к теплоносителям.
- •Экономические требования к теплоносителям.
- •Эксплуатационные показатели.
- •1.5.Теплотехнические свойства строительных материалов.
- •Пористость и объемный вес.
- •Влажность.
- •Теплопроводность.
- •Теплоемкость.
- •1.5.Заключение
- •Лекция№2: нормативная документация и терминология по климатологии, строительной теплотехнике, системам кондиционирования микроклимота.
- •2.1 Нормативная документация по микроклимату в помещениях и скм Перечень нормативных документов и область их применения.
- •СНиП 23-01-99*. “Строительная климатология”
- •Классификация помещений.
- •Параметры микроклимата.
- •2.3 Терминология и основные разделы по строительной климатологии (согласно сНиП 23-01-99*). Термины и определения
- •Расчетные параметры наружного воздуха для проектирования систем овк.
- •2.4 Терминология и основные разделы сНиП 41-01-2003. Отопление вентиляция и кондиционирование(от 1 января 2004г.) Термины и их определение.
- •Общие положения.
- •Параметры внутреннего воздуха при отоплении и вентиляции помещений.
- •Параметры микроклимата при кондиционировании помещений.
- •Параметры внутреннего воздуха в производственных помещениях с автоматизированным технологическим оборудованием.
- •Параметры внутреннего воздуха при других технологических и тепловых условиях.
- •Концентрация вредных веществ в помещениях.
- •Параметры наружного воздуха.
- •2.5 Терминология и основные разделы сНиП II-3-79*(издание 1998г). Термины, примененные в сНиП II-3-79*(ключевые слова).
- •Термины из других нормативных документов, применяемые в сНиП II-3-79* .
- •Краткое содержание.
- •Общие требования и показатели микроклимата
- •Оптимальные и допустимые нормы температуры, относительной влажности и скорости движения воздуха в помещениях жилых зданий.
- •Перечень наиболее гигиенически значимых веществ, загрязняющих воздушную среду помещений жилых зданий.
- •2.8. Заключение.
- •Лекция №3: микроклимат помещения и системы его обеспечения.
- •3.1. Теплообмен человека и условия комфортности. Понятие микроклимата и физиологические предпосылки для его создания.
- •Условия комфортности.
- •Нормативные требования к микроклимату в помещении.
- •3.2. Расчётные параметры микроклимата в помещениях.
- •3.3. Зимние и летние расчётные климатические условия для систем обеспечения микроклимата.
- •3.4 Системы создания микроклимата в помещении.
- •3.5 Заключение.
- •Лекция №4: тепловлажностный и воздушный режимы помещений.
- •4.1. Факторы, определяющие микроклимат в помещениях.
- •4.2. Особенности теплового режима здания. Назначение теплового режима.
- •Тепловые условия в помещении.
- •Теплообмен в помещении.
- •4.3. Зимний воздушно-тепловой режим помещений. Расчётные климатические условия.
- •Тепловой баланс помещений.
- •Влияние теплозащитных свойств ограждений на воздушно-тепловой режим помещения.
- •Воздухопроницаемость ограждающих конструкций и её влияние на воздушно-тепловой и влажностный режим помещения.
- •Влажность воздуха помещения и её влияние на воздушно-тепловой режим помещения.
- •4.4. Летний воздушно-тепловой режим помещений. Особенности летнего теплового режима.
- •Средства для подержания летнего теплового режима.
- •Тепловой баланс помещения в летний период года.
- •4.5. Заключение.
- •Лекция №5: теплопередача в ограждающих конструкциях здания при стационарном тепловом потоке.
- •5.1.Общие закономерности.
- •5.2.Расчёт сопротивления теплопередаче ограждений.
- •5.3. Сопротивления теплообмену и коэффициенты теплоотдаче у поверхности ограждения.
- •5.4. Термическое сопротивление ограждения.
- •5.5. Расчёт температуры в ограждении.
- •5.6. Нормирование сопротивления теплопередаче.
- •5.7. Теплоустойчивость ограждающих конструкций.
- •5.7. Заключение.
- •Лекция №6: воздухопроницание ограждающих конструкций зданий.
- •Ветровое давление.
- •Совместное действие на здание гравитационного и ветрового давлений.
- •6.2. Воздухопроницаемость материалов.
- •6.3. Воздухопроницаемость ограждений.
- •6.4. Расчёт воздухопроницания через ограждения.
- •6.5. Заключение.
- •Лекция №7: влажный воздух и его применение в системах кондиционирования микроклимата.
- •7.1. Общие сведения о влажном воздухе. Определение и область применения воздуха.
- •Состояние и состав воздуха.
- •7.2 Основные характеристики влажного воздуха Определение характеристик воздуха.
- •Средства и методы контроля влажности воздуха.
- •Значение параметра влажности воздуха как экологического показателя среды.
- •7.3 Определение параметров тепловлажностного состояния воздуха по I-d диаграмме. Принцип определения параметров воздуха по I-d диаграмме.
- •Сущность аспирационного метода определения относительной влажности.
- •Примеры построения тепловлажностностных процессов в I-d диаграмме.
- •7.4 Теплотехнические свойства влажного воздуха.
- •Теплофизические свойства сухого воздуха при нормальном атмосферном давлении *
- •7.5 Заключение.
- •Лекция 8. Влажностный режим зданий и его влияние на микроклимат в помещениях.
- •8.1 Общие понятия о влажностном режиме наружных ограждений. Предмет изучения влажностного режима наружных ограждений.
- •Значение влажностного режима наружных ограждений.
- •Причины появления влаги в наружных ограждениях.
- •8.2 Конденсация и сорбция водяного пара. Влажностные характеристики внутреннего и наружного воздуха.
- •Конденсация влаги на поверхности ограждения.
- •Меры против конденсации влаги на поверхности ограждения.
- •Сорбция и десорбция.
- •8.3 Перемещение в ограждении парообразной влаги. Физическая сущность паропроницаемости.
- •Количественные зависимости для расчета паропроницаемости.
- •8.4 Расчет влажностного режима при стационарных условиях диффузии водяного пара. Особенности расчета влажностного режима.
- •Методика расчета влажностного режима.
- •Факторы, влияющие на влажностный режим ограждения.
- •Анализ условий для просыхания ограждения.
- •Оценка результатов расчета влажностного режима.
- •Расчет влажностного режима при нестационарных условиях диффузии водяного пара.
- •8.5 Меры против конденсации в ограждениях
- •8.6 Влажностный режим бесчердачных перекрытий
- •8.7. Перемещение жидкой влаги в ограждении Механизм перемещения влаги.
- •Условия для перемещения влаги в строительных материалах.
- •8.8 Заключение
- •Лекция № 9 системы кондиционирования микроклимата в помещениях.
- •9.1. Санитарно-гигиенические основы систем кондиционирования микроклимата
- •9.2.Организация воздухообмена в помещении.
- •Понятие о способах организации воздухообмена и устройстве систем вентиляции.
- •Схемы воздухораспределения в помещениях.
- •Воздухораспределение струями.
- •9.3 Организация теплообмена в помещениях. Общие замечания.
- •9.4 Особенности и области применения систем создания микроклимата в помещениях. Назначение систем кондиционирования микроклимата в помещениях.
- •Виды и область применения систем отопления.
- •Типы и разновидности отопительных приборов.
- •9.5 Энергосбережение и микроклимат в помещении.
- •9.6.Заключение
- •Список рекомендуемой литературы.
8.6 Влажностный режим бесчердачных перекрытий
Большое влияние на влажностный режим бесчердачных покрытий оказывает гидроизоляционный ковер, назначение которого предохранять покрытие от увлажнения его дождевой или талой водой. Гидроизоляционный ковер является в то же время и хорошим пароизоляционным слоем, а расположение его на наружной поверхности покрытия является причиной конденсации влаги под ковром. Особенно опасной будет конденсация влаги в покрытиях деревянных или утепленных органическими материалами, так как она может привести к загниванию их.
Устройство в таком случае второго пароизоляционного слоя у внутренней поверхности покрытия, например внутренней штукатурки по толю или пергамину, не вполне достигает цели, так как этот слой всегда будет более паропроницаем, чем рулонный ковер, и, уменьшив интенсивность конденсации, совсем ее не устранит.
Единственной целесообразной мерой для устранения конденсации влаги в таких покрытиях является устройство в них воздушной прослойки или продухов, расположенных над теплоизоляционным слоем и вентилируемых наружным воздухом. Пример такого покрытия приведен на рис. 45. При такой конструкции покрытия наружный воздух, проникая в прослойку, имеющую более высокую температуру, будет нагреваться, отнимать влагу от материала покрытия и испарять ту влагу, которая может конденсироваться из внутреннего воздуха на верхней поверхности прослойки. Особенно большое значение имеет вентиляция воздушной прослойки в первое время эксплуатации покрытия, если материалы его имеют повышенную влажность.
Теплотехнический расчет покрытий с вентилируемой воздушной прослойкой изложен ранее. Расчет таких покрытий на конденсацию в них влаги сводится к определению величины упругости водяного пара ех в вентилируемой прослойке.
Конденсация влаги в покрытии будет значительно большей при вентилировании воздушной прослойки внутренним воздухом здания. Поэтому сообщение воздушной прослойки с внутренним воздухом недопустимо. Расчеты показывают, что для устранения конденсации влаги в покрытиях, вентилируемых наружным воздухом, достаточны небольшие скорости воздуха в воздушной прослойке покрытия. Отсутствие вентиляции наружным воздухом деревянных бесчердачных покрытий часто бывает единственной причиной резкого повышения их влажности; такие покрытия в течение 2-3 лет приходят в полную негодность. Практика обследования деревянных бесчердачных покрытий показала, что недостаточно ясное представление об их влажностном режиме приводило к конструктивным ошибкам при их проектировании, что в свою очередь вызывало разрушение этих покрытий. Отверстия для вентиляции воздушной прослойки не должны покрываться инеем, так как, замерзая, иней образует ледяную пленку и вентилирование прослойки прекращается.
8.7. Перемещение жидкой влаги в ограждении Механизм перемещения влаги.
Перемещение влаги в материале начинается с момента образования в нем конденсационной влаги, так как сорбированная влага, находящаяся в материале в связанном состоянии, перемещаться в жидком виде не может. Только свободная влага, образовавшаяся в материале или в результате конденсации в нем водяного пара, или в результате непосредственного впитывания материалом воды, может перемещаться. Так как капиллярная конденсация начинается в материале при относительных упругостях водяного пара ниже 100%, то в некоторых материалах передвижение жидкой влаги может начинаться раньше, чем материал достигнет предела сорбционного увлажнения.
В первой стадии увлажнения жидкая влага сосредоточивается в местах контактов отдельных частиц или в наиболее узких капиллярах и вследствие своей раздробленности перемещаться еще не может. Перемещение влаги начинается с момента, когда влага, сосредоточенная в отдельных местах, начинает сливаться воедино. При этом влага заполняет поры материала только частично, так как в них кроме влаги будут находиться воздух и водяной пар. Эта стадия передвижения влаги носит название капиллярной диффузии. При капиллярной диффузии кроме движения влаги в жидкой фазе может происходить и перемещение влаги в виде пара при градиенте температуры в материале. Парообразная влага может передвигаться в материале и в направлении, обратном движению жидкой влаги.
При дальнейшем повышении влажности материала его поры или мелкие капилляры могут частично оказаться полностью заполненными жидкой влагой, в этом случае газовая фаза в порах материала окажется уже не сплошной, а раздробленной (диспергированной). Это будет началом стадии перемещения влаги, носящей название фильтрации.
Таким образом, стадия капиллярной диффузии характеризуется тем, что при ней влажность материала больше предела сорбционного увлажнения, но меньше той влажности, при которой газовая фаза в материале оказывается диспергированной. При капиллярной диффузии газовая фаза в материале сообщающаяся.