
- •Содержание.
- •Ведение
- •Лекция №1 термодинамические и теплофизические свойства энергоносителей и материалов, применяемых в системах создания микроклимата в помещениях зданий.
- •1.1 Основные термодинамические понятия Параметры состояния и термодинамический процесс.
- •Первый закон термодинамики.
- •Универсальное уравнение состояния идеального газа.
- •Основные положения второго закона термодинамики.
- •Цикл и теоремы Карно.
- •Политропный процесс
- •Свойства реальных газов.
- •1.2 Термодинамические процессы водяного пара. Понятия о водяном паре
- •Процесс парообразования в координатах р—V.
- •Процесс парообразования в координатах I-s.
- •1.3 Термодинамические процессы влажного воздуха.
- •Теплофизические свойства теплоносителей. Теплоносители.
- •Санитарно-гигиенические требования к теплоносителям.
- •Экономические требования к теплоносителям.
- •Эксплуатационные показатели.
- •1.5.Теплотехнические свойства строительных материалов.
- •Пористость и объемный вес.
- •Влажность.
- •Теплопроводность.
- •Теплоемкость.
- •1.5.Заключение
- •Лекция№2: нормативная документация и терминология по климатологии, строительной теплотехнике, системам кондиционирования микроклимота.
- •2.1 Нормативная документация по микроклимату в помещениях и скм Перечень нормативных документов и область их применения.
- •СНиП 23-01-99*. “Строительная климатология”
- •Классификация помещений.
- •Параметры микроклимата.
- •2.3 Терминология и основные разделы по строительной климатологии (согласно сНиП 23-01-99*). Термины и определения
- •Расчетные параметры наружного воздуха для проектирования систем овк.
- •2.4 Терминология и основные разделы сНиП 41-01-2003. Отопление вентиляция и кондиционирование(от 1 января 2004г.) Термины и их определение.
- •Общие положения.
- •Параметры внутреннего воздуха при отоплении и вентиляции помещений.
- •Параметры микроклимата при кондиционировании помещений.
- •Параметры внутреннего воздуха в производственных помещениях с автоматизированным технологическим оборудованием.
- •Параметры внутреннего воздуха при других технологических и тепловых условиях.
- •Концентрация вредных веществ в помещениях.
- •Параметры наружного воздуха.
- •2.5 Терминология и основные разделы сНиП II-3-79*(издание 1998г). Термины, примененные в сНиП II-3-79*(ключевые слова).
- •Термины из других нормативных документов, применяемые в сНиП II-3-79* .
- •Краткое содержание.
- •Общие требования и показатели микроклимата
- •Оптимальные и допустимые нормы температуры, относительной влажности и скорости движения воздуха в помещениях жилых зданий.
- •Перечень наиболее гигиенически значимых веществ, загрязняющих воздушную среду помещений жилых зданий.
- •2.8. Заключение.
- •Лекция №3: микроклимат помещения и системы его обеспечения.
- •3.1. Теплообмен человека и условия комфортности. Понятие микроклимата и физиологические предпосылки для его создания.
- •Условия комфортности.
- •Нормативные требования к микроклимату в помещении.
- •3.2. Расчётные параметры микроклимата в помещениях.
- •3.3. Зимние и летние расчётные климатические условия для систем обеспечения микроклимата.
- •3.4 Системы создания микроклимата в помещении.
- •3.5 Заключение.
- •Лекция №4: тепловлажностный и воздушный режимы помещений.
- •4.1. Факторы, определяющие микроклимат в помещениях.
- •4.2. Особенности теплового режима здания. Назначение теплового режима.
- •Тепловые условия в помещении.
- •Теплообмен в помещении.
- •4.3. Зимний воздушно-тепловой режим помещений. Расчётные климатические условия.
- •Тепловой баланс помещений.
- •Влияние теплозащитных свойств ограждений на воздушно-тепловой режим помещения.
- •Воздухопроницаемость ограждающих конструкций и её влияние на воздушно-тепловой и влажностный режим помещения.
- •Влажность воздуха помещения и её влияние на воздушно-тепловой режим помещения.
- •4.4. Летний воздушно-тепловой режим помещений. Особенности летнего теплового режима.
- •Средства для подержания летнего теплового режима.
- •Тепловой баланс помещения в летний период года.
- •4.5. Заключение.
- •Лекция №5: теплопередача в ограждающих конструкциях здания при стационарном тепловом потоке.
- •5.1.Общие закономерности.
- •5.2.Расчёт сопротивления теплопередаче ограждений.
- •5.3. Сопротивления теплообмену и коэффициенты теплоотдаче у поверхности ограждения.
- •5.4. Термическое сопротивление ограждения.
- •5.5. Расчёт температуры в ограждении.
- •5.6. Нормирование сопротивления теплопередаче.
- •5.7. Теплоустойчивость ограждающих конструкций.
- •5.7. Заключение.
- •Лекция №6: воздухопроницание ограждающих конструкций зданий.
- •Ветровое давление.
- •Совместное действие на здание гравитационного и ветрового давлений.
- •6.2. Воздухопроницаемость материалов.
- •6.3. Воздухопроницаемость ограждений.
- •6.4. Расчёт воздухопроницания через ограждения.
- •6.5. Заключение.
- •Лекция №7: влажный воздух и его применение в системах кондиционирования микроклимата.
- •7.1. Общие сведения о влажном воздухе. Определение и область применения воздуха.
- •Состояние и состав воздуха.
- •7.2 Основные характеристики влажного воздуха Определение характеристик воздуха.
- •Средства и методы контроля влажности воздуха.
- •Значение параметра влажности воздуха как экологического показателя среды.
- •7.3 Определение параметров тепловлажностного состояния воздуха по I-d диаграмме. Принцип определения параметров воздуха по I-d диаграмме.
- •Сущность аспирационного метода определения относительной влажности.
- •Примеры построения тепловлажностностных процессов в I-d диаграмме.
- •7.4 Теплотехнические свойства влажного воздуха.
- •Теплофизические свойства сухого воздуха при нормальном атмосферном давлении *
- •7.5 Заключение.
- •Лекция 8. Влажностный режим зданий и его влияние на микроклимат в помещениях.
- •8.1 Общие понятия о влажностном режиме наружных ограждений. Предмет изучения влажностного режима наружных ограждений.
- •Значение влажностного режима наружных ограждений.
- •Причины появления влаги в наружных ограждениях.
- •8.2 Конденсация и сорбция водяного пара. Влажностные характеристики внутреннего и наружного воздуха.
- •Конденсация влаги на поверхности ограждения.
- •Меры против конденсации влаги на поверхности ограждения.
- •Сорбция и десорбция.
- •8.3 Перемещение в ограждении парообразной влаги. Физическая сущность паропроницаемости.
- •Количественные зависимости для расчета паропроницаемости.
- •8.4 Расчет влажностного режима при стационарных условиях диффузии водяного пара. Особенности расчета влажностного режима.
- •Методика расчета влажностного режима.
- •Факторы, влияющие на влажностный режим ограждения.
- •Анализ условий для просыхания ограждения.
- •Оценка результатов расчета влажностного режима.
- •Расчет влажностного режима при нестационарных условиях диффузии водяного пара.
- •8.5 Меры против конденсации в ограждениях
- •8.6 Влажностный режим бесчердачных перекрытий
- •8.7. Перемещение жидкой влаги в ограждении Механизм перемещения влаги.
- •Условия для перемещения влаги в строительных материалах.
- •8.8 Заключение
- •Лекция № 9 системы кондиционирования микроклимата в помещениях.
- •9.1. Санитарно-гигиенические основы систем кондиционирования микроклимата
- •9.2.Организация воздухообмена в помещении.
- •Понятие о способах организации воздухообмена и устройстве систем вентиляции.
- •Схемы воздухораспределения в помещениях.
- •Воздухораспределение струями.
- •9.3 Организация теплообмена в помещениях. Общие замечания.
- •9.4 Особенности и области применения систем создания микроклимата в помещениях. Назначение систем кондиционирования микроклимата в помещениях.
- •Виды и область применения систем отопления.
- •Типы и разновидности отопительных приборов.
- •9.5 Энергосбережение и микроклимат в помещении.
- •9.6.Заключение
- •Список рекомендуемой литературы.
7.4 Теплотехнические свойства влажного воздуха.
Влажный воздух как теплоноситель в системах СКМ при температуре 70-40 °С по сравнению с водой 150-70 °С характеризуется низкой удельной теплоёмкостью 1КДж/(кг·К) (в4,2 раза ниже чем у воды) и плотностью 1кг/м3 (в 950 раз ниже чем у воды), высокой подвижностью 5-20 м/с (в 10-15 раз выше, чем у воды); причём плотность его уменьшается при нагревании.
Воздух – малотеплоёмкий, легко подвижный, хорошо регулируемый (по температуре и количеству) теплоноситель, обеспечивающий быстрое изменение или равномерность температуры помещений, безопасный в пожарном отношении. При использовании воздуха возможно вынесение отопительных приборов из помещений и осуществлении вентиляции помещений.
К недостаткам применения воздуха в качестве теплоносителя относятся существенное увеличение площади поперечного сечения и массы воздуховодов, возрастание бесполезных потерь тепла, расхода теплоизоляционного материала и топлива, заметное понижение его температуры по длине воздуховодов.
Теплофизические свойства сухого воздуха при нормальном атмосферном давлении *
t, C |
, кг/м3 |
cp, кДж/кг/К |
102, Вт/м/К |
a105, м2/с |
106, нс/м |
106, м2/с |
Pr |
-50 |
1,584 |
1,013 |
2,035 |
1,27 |
14,61 |
9,23 |
0,728 |
-30 |
1,453 |
1,013 |
2,198 |
1,49 |
15,69 |
10,80 |
0,723 |
-10 |
1,342 |
1,009 |
2,361 |
1,74 |
16,67 |
12,43 |
0,712 |
0 |
1,293 |
1,005 |
2,442 |
1,88 |
17,16 |
13,28 |
0,707 |
10 |
1,247 |
1,005 |
2,594 |
2,01 |
17,65 |
14,16 |
0,705 |
30 |
1,165 |
1,005 |
2,757 |
2,29 |
18,63 |
16,00 |
0,701 |
50 |
1,093 |
1,005 |
2,896 |
2,57 |
19,61 |
17,95 |
0,698 |
70 |
1,029 |
1,009 |
3,129 |
2,86 |
20,59 |
20,02 |
0,694 |
100 |
0,946 |
1,009 |
3,338 |
3,36 |
21,82 |
23,13 |
0,688 |
140 |
0,854 |
1,017 |
3,641 |
4,03 |
23,73 |
27,80 |
0,684 |
180 |
0,779 |
1,022 |
3,780 |
4,75 |
25,30 |
32,49 |
0,681 |
200 |
0,746 |
1,026 |
3,931 |
5,14 |
25,99 |
34,85 |
0,680 |
250 |
0,674 |
1,038 |
4,269 |
6,10 |
27,36 |
40,61 |
0,677 |
300 |
0,615 |
1,047 |
4,606 |
7,16 |
29,72 |
48,33 |
0,674 |
350 |
0,566 |
1,059 |
4,908 |
8,19 |
31,38 |
56,46 |
0,676 |
400 |
0,524 |
1,068 |
5,211 |
9,31 |
33,05 |
63,09 |
0,678 |
500 |
0,456 |
1,093 |
5,746 |
11,53 |
36,19 |
79,38 |
0,687 |
600 |
0,404 |
1,114 |
5,222 |
13,83 |
39,13 |
96,89 |
0,699 |
700 |
0,362 |
1,135 |
6,711 |
16,34 |
41,78 |
115,4 |
0,706 |
800 |
0,329 |
1,156 |
7,176 |
18,88 |
44,33 |
134,8 |
0,713 |
900 |
0,301 |
1,172 |
7,630 |
21,62 |
46,68 |
155,1 |
0,717 |
1000 |
0,277 |
1,185 |
8,072 |
24,59 |
49,04 |
177,1 |
0,719 |
1200 |
0,239 |
1,210 |
9,154 |
31,65 |
53,45 |
223,7 |
0,724 |
* Например, при температуре 30оС кинематическая вязкость воздуха составляет 16,00 ∙10 6 м2/с, плотность 1,165 кг/м3, изобарная теплоёмкость 1,005 кДж/(кг · К), коэффициент теплопроводности 2,757 · 10-2 Вт/(м · К).
Анализ теплофизических свойств сухого воздуха показывает, что при увеличении температуры его до 100 °С, то есть в (273+100)/ (273+30) = 1,231 раза (на 23,1%) (по абсолютной температуре) теплофизические свойства изменяются следующим образом:
вязкость увеличивается в 23,13/16=1,446 раз (на 45%);
плотность уменьшается в 1,165/0,946=1,231 раза (на 23%);
теплоёмкость увеличивается в 1,009/1,005=1,004 раза (на 0,4 %);
коэффициент теплопроводности увеличивается в 3,338/2,757=1,211 раза (на 21,1 %).
Для влажного воздуха с температурой t=30 °С (CP =1,005 кДж/(кг · К) при относительной влажности φ=37% (или влагосодержании d=10 г/кг с.в) теплоёмкость составит 1,005+1,807 ·10·10-3 = 1,0231 кДж/(кг · К), то есть увеличивается относительно сухого воздуха в 1,0231/1,005= 1,018 раза (на 1,8%).
Аналогично при t=30 °С, φ=60% (или d=16 г/кг с.в) удельная теплоёмкость влажного воздуха составит 1,005+1,807 ·16 ·10-3 = 1,0339 кДж/(кг · К), то есть увеличивается относительно сухого воздуха в 1,0339/1,005= 1,0288 раза (на 2,9%).
Тем же значениям теплоёмкости влажного воздуха 1,023 и 1,034 кДж/(кг · К) (при t=30 °С) будут соответствовать теплоёмкости сухого воздуха при нагреве до 180 и 230 °С соответственно.