
- •1.Лекция. Основы принятия решений
- •2. Лекция. Математическое моделирование
- •3. Лекция. Линейное программирование
- •4. Лекция . Транспортная задача
- •5. Лекция . Целочисленное программирование
- •6. Лекция. Динамическое программирование
- •6.1. Постановка задачи.............................................................................64
- •7. Лекция. Управление производством
- •8. Лекция. Элементы теории игр
- •8.1.Основные понятия………………………………………………………81
- •9. Лекция. Системы массового облуживания
- •10. Лекция. Нелинейное программирование
- •10.1. Основные понятия…………………………………………………….102
- •1 Лекция. Основы теории принятия решений.
- •1.2. Основные понятия системного анализа
- •1.3. Основные понятия, применяемые
- •1.4. Постановка задач для принятия
- •2. Лекция. Экономико - математическое моделирование
- •2.1 Основные понятия.
- •2. 2 Классификация моделей
- •2. 3 Классификация решаемых оптимизационных задач.
- •2.Классификация моделей.
- •3.Лекция. Линейное программирование.
- •3.1 Общая постановка задачи
- •3. 2 Двойственность в задачах линейного программирования
- •3. 3 Теоремы двойственности.
- •3.4 Геометрический метод решения задач
- •3. 5 Симплексный метод решения задач лп
- •4.Лекция. Транспортная задача
- •4. 1 Постановка задачи. Математическая модель
- •4. 2 Алгоритм решения транспортных задач.
- •4.2.1 Метод наименьшего элемента.
- •4.2.2 Метод потенциалов.
- •4. 3 Примеры решения транспортных задач.
- •1.Проверяем задачу на сбалансированность.
- •4.Составляем математическую модель прямой и двойственной задач.
- •1.Решаем задачу по методу максимального элемента.
- •5.Лекция. Целочисленное программирование.
- •5. 1 Постановка задачи целочисленного программирования.
- •5.2 Графический метод решения задач целочисленного программирования.
- •1.3 Пример решения задачи целочисленного программирования.
- •5.4. Задача о коммивояжере.
- •6.Лекция. Динамическое программирование.
- •6.1. Постановка задачи.
- •6.2. Принцип оптимальности Беллмана.
- •6.3. Задача распределения средств на 1 год.
- •6.4. Задача распределения средств на два года
- •7.Лекция . Управление производством . Управление запасами.
- •7. 1 Управление производством.
- •7. 2 Управление запасами. Складская задача.
- •8. Лекция. Элементы теории игр.
- •8.1 Основные понятия.
- •8.2 Антагонистические игры.
- •8.3 Игры с « природой».
- •2. Критерий Гурвица.
- •3. Критерий Сэвиджа (критерий минимаксного риска).
- •4. Критерий Лапласа. N
- •9. Лекция. Системы массового обслуживания.
- •9.I. Формулировка задачи и характеристики смо
- •9.2 Смо с отказами.
- •9.2.1 Основные понятия
- •9.3 Смо с неограниченным ожиданием
- •9.3.1 Основные понятия
- •9.3.2 Формулы для расчета установившегося режима
- •9.4 Смо с ожиданием и с ограниченной длиной очереди
- •9.4.1 Основные понятия
- •9.4.2Формулы для установившегося режима
- •9.5 Примеры решения задач.
- •10. Лекция. Нелинейное программирование.
- •10.1. Основные понятия.
- •10.2. Безусловный экстремум
- •10.3. Условный экстремум
- •1 Тема. «линейное программирование».
- •2 Тема. «транспортная задача»
- •3 Тема. «целочисленное программирование»
- •4 Тема. Динамическое программирование.
- •5 Тема. Управление производством.
- •6 Тема. Элементы теории игр.
- •7 Тема . Системы массового обслуживания
- •8 Тема . Нелинейное програмирование.
8. Лекция. Элементы теории игр.
8.1 Основные понятия.
Теория игр - это математическая теория, исследующая конфликтные ситуации, в которых принятие решений зависит от нескольких участников.
Математическая модель конфликтной ситуации называется игрой. Стороны, участвующие в конфликте - игроки, а исход конфликта - выигрыш (проигрыш). Выигрыш или проигрыш может быть задан количественно.
Игра называется антагонистической или игрой с нулевой суммой, если выигрыш одного из игроков равен проигрышу другого, поэтому для полного «задания» игры достаточно указать величину выигрыша первого игрока.
Стратегией игрока называется совокупность принципов, определяющих выбор его действий при каждом личном ходе в зависимости от сложившейся ситуации.
Для того чтобы найти решение игры, следует для каждого игрока выбрать стратегию, которая удовлетворяет условию оптимальности, т.е. один из игроков должен получать максимальный выигрыш, когда второй игрок придерживается своей стратегии. В тоже время второй игрок должен иметь минимальный проигрыш, если первый придерживается своей стратегии.
Такие стратегии называются оптимальными.
При выборе оптимальной стратегии следует полагать, что оба игрока ведут себя разумно с точки зрения своих интересов.
Матрица, элементы которой характеризуют выигрыш первого игрока (МЫ –игрок А) и проигрыш второго (игрок В) при их возможных стратегиях (обозначается |αij|), называется платежной матрицей игры.
Величина α = max min aij называется нижней ценой игры –
j i
гарантированный выигрыш игрока А при применении игроком В своих стратегий. Находится путем выбора минимального значения из aij в каждой строке платежной матрицы игры (получаем столбец) и из этих минимальных значений находится максимальное, которое и соответствует нижней цене игры α.
Величина β = min max aij называется верхней ценой игры –
i j
минимальный проигрыш игрока В при применении игроком А своих стратегий. Находится путем выбора максимального значения из aij по столбцам (получим строку) и из этих максимальных значений находится минимальное значение, которое и соответствует верхней цене игры β.
Выигрыш, соответствующий оптимальному решению, называется ценой игры γ. Цена игры удовлетворяет неравенству α ≤ γ ≥ β.Такие игры называются играми в смешанных стратегиях.
Если нижняя и верхняя цены игра совпадают, то их общее значение
α = β = γ чистой ценой игры или седловой точкой. Такие игры называются играми в чистых стратегиях.
Минимаксные стратегии, соответствующие цене игры, являются оптимальными стратегиями, а их совокупность (АiВj) – оптимальным решением или решением игры.
Игра, в которой интересы игроков противоположны называется антагонистичной.
В некоторых задачах, приводящихся к игровым, имеется неопределенность, вызванная отсутствием информации об условиях, в которых осуществляется действие (погода, покупательский спрос и т.п.). Эти условия зависят не от сознательных действий другого игрока, а от объективной действительности. Такие игры называются играми с «природой».
Человек в играх с «природой» старается действовать осмотрительно, второй игрок (природа и т.п.) действует случайно.
При решении задач, относящихся к теории игр, необходимо правильно классифицировать задачу, потому что методы, применяемые к антагонистическим играм кардинально отличаются от методов решения игр с природой.