
- •Лекция №
- •Тема 4. Моделирование по схеме марковских случайных процессов. Основные положения
- •4.1. Классификация марковских процессов
- •4.2. Расчет марковской цепи с дискретным временем
- •4.3. Марковские цепи с непрерывным временем
- •4.3.1. Уравнения Колмогорова
- •4.3.2. Поток событий. Простейший поток и его свойства
- •4.3.3. Пуассоновские потоки событий и непрерывные марковские цепи
- •4.3.4. Предельные вероятности состояний
- •4.3.5. Схема гибели и размножения
Лекция №
Тема 4. Моделирование по схеме марковских случайных процессов. Основные положения
Для вычисления числовых параметров, характеризующих стохастические объекты, нужно построить некоторую вероятностную модель явления, учитывающую сопровождающие его случайные факторы.
Для математического описания многих явлений, развивающихся в форме случайного процесса, может быть с успехом применен математический аппарат, разработанный в теории вероятностей для так называемых марковских случайных процессов.
Поясним это понятие.
Пусть имеется некоторая физическая система S, состояние которой меняется с течением времени (под системой S может пониматься что угодно: техническое устройство, ремонтная мастерская, вычислительная машина и т.д.).
Если состояние S меняется по времени случайным образом, говорят, что в системе S протекает случайный процесс.
Примеры:
процесс функционирования ЭВМ (поступление заказов на ЭВМ, вид этих заказов, случайные выходы из строя),
процесс наведения на цель управляемой ракеты (случайные возмущения (помехи) в системе управления ракетой),
процесс обслуживания клиентов в парикмахерской или ремонтной мастерской (случайный характер потока заявок (требований), поступивших со стороны клиентов).
Случайный процесс называется марковским процессом (или «процессом без последствия»), если для каждого момента времени t0 вероятность любого состояния системы в будущем (при t> t0) зависит только от её состояния в настоящем (при t= t0) и не зависит от того, когда и каким образом система пришла в это состояние (т.е. как развивался процесс в прошлом).
Пусть S техническое устройство, которое характеризуется некоторой степенью изношенности S. Нас интересует, как оно будет работать дальше.
В первом приближении характеристики работы системы в будущем (частота отказов, потребность в ремонте) зависят от состояния устройства в настоящий момент и не зависят от того, когда и как устройство достигло своего настоящего состояния.
Теория марковских случайных процессов – обширный раздел теории вероятности с широким спектром приложений (физические явления типа диффузии или перемешивания шихта во время плавки в доменной печи, процессы образования очередей).
4.1. Классификация марковских процессов
Марковские случайные процессы делятся на классы.
Первый классификационный признак – характер спектра состояний. Случайный процесс (СП) называется процессом с дискретными состояниями, если возможные состояния системы S1, S2, S3…можно перечислить, а сам процесс состоит в том, что время от времени система S скачком (мгновенно) перескакивает из одного состояния в другое.
Пример. Техническое устройство состоит из двух узлов I и II, каждый из которых может выйти из строя. Состояния: S1 – оба узла работают; S2 – первый узел отказал, второй рабочий; S3 – второй узел отказал, первый рабочий; S4 – оба узла отказали.
Существуют процессы с непрерывными состояниями (плавный переход из состояния в состояние), например, изменение напряжения в осветительной сети.
Будем рассматривать только СП с дискретными состояниями.
В этом случае удобно пользоваться графом состояний, в котором возможные состояния системы обозначаются узлами, а возможные переходы - дугами.
Второй классификационный признак – характер функционирования во времени.
СП называется процессом с дискретным временем, если переходы системы из состояния в состояние возможны только в строго определенные, заранее фиксированные моменты времени: t1, t2… .
Если переход системы из состояния в состояние возможен в любой наперед неизвестный случайный момент, то говорят о СП с непрерывным временем.