Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
2 Расчет характеристик антенны.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
1.41 Mб
Скачать

2 Расчет характеристик антенны

2.1. Выбор типа антенны

В качестве излучателей для передающей ФАР для РЛС выберем логопериодическую антенну. Исходя из начального условия , диапазон рабочих частот нашего устройства находится в пределах от 4 до 30МГц. Значит ФАР будет работать в коротковолновом диапазоне (4-30МГц).Длинна волны на максимальной частоте будет находиться в декаметровом диапазоне и составит:

(2.1.1)

(2.1.2)

Точный расчет логопериодической антенны довольно сложен, но существует и простая методика расчета. Она позволяет сконструировать антенну, задавшись такими параметрами, как коэффициент направленного действия (КНД) и рабочий интервал частот.

Длины вибраторов логопериодической антенны и расстояния между ними должны изменяться в геометрической прогрессии со знаменателем τ, а расстояние (выраженное в длинах волн) между полуволновым наибольшим и соседним, меньшим, вибратором характеризуется параметром σ. Параметры τ и σ связаны между собой соотношением:

σ = 0,25 (1 – τ) ctgα,

где α представляет собой угол между осью антенны и линией, проходящей через концы вибраторов. Выбор параметров τ и σ носит компромиссный характер и влияет на число вибраторов и размеры антенны (на ее длину L между наименьшим и наибольшим вибраторами).

В соответствии с этим, в нашем случае при КНД=10, σ=0,17 τ=0,925. Следует отметить, что число вибраторов антенны N зависит, в основном, от значения τ, а ее размеры возрастают с увеличением σ. Кроме того, оптимальному значению σ соответствует минимуму коэффициента стоячей волны (КСВ), а при больших значениях σ диаграмма направленности становится многолепестковой.

Задав параметры σ и τ вычисляем угол α по формуле:

Следовательно, α=70

Для определения ориентировочной длины антенны L и числа вибраторов N находят ширину «активной» области антенны Bs, под которой понимают зону, где находится резонансный вибратор с двумя другими, примыкающими к нему, из соотношения:

Bs= B*Bar,

где B = fmax/fmin – заданный коэффициент перекрытия рабочего интервала частот, а Bar – коэффициент, характеризующий ширину «активной» области.

Зададимся коэффициентом Bar:

Bar=1,6

Тогда:

Поскольку длина самого длинного вибратора равна λmax/2, то длину антенны можно определить по формуле:

Необходимое число вибраторов можно найти из соотношения:

После этого рассчитываем длину вибраторов и расстояние между ними, начиная с самого длинного, равного половине максимальной длины волны рабочего интервала частот, по формулам:

ln+1=ln*τ,

dn=0.5(ln-ln+1)ctgα,

где dn – расстояние между двумя вибраторами с номерами n и n+1.

Расчет геометрии антенны производился с помощью программы MMANA.

Ниже на рис.2 приводится вид антенны после поведенной оптимизации.

Рис.2. Общий вид антенны.

На рис.3,4,5 представлены диаграммы направленности антенны, рассчитанные в свободном пространстве, на высоте λ/4 и на высоте 5м соответственно.

Рис.3. Диаграмма направленности антенны в свободном пространстве.

Рис.4. Диаграмма направленности антенны на высоте λ/4.

Рис.5. Диаграмма направленности антенны на высоте 5м.

Далее покажем, как ведут себя КСВ, усиление и Z в заданном диапазоне частот:

Рис.6. Графики зависимости усиления и коэффициента F/B от изменения частоты в заданном диапазоне частот.

Рис.7. График зависимости КСВ от изменения частоты в заданном диапазоне частот.

Рис.8. График зависимости активного и реактивного сопротивления от изменения частоты в заданном диапазоне частот.

По этим графикам можно сказать, что в заданном диапазоне частот мы добились необходимого усиления (14дБ), а КСВ не превышает отметки в 2.6.

Расчет антенной решетки

Далее проведем моделирование дуговой АР. АР состоит из четырех одинаковых ЛПА, рассчитанных выше. Угол между осями ЛПА , что соответствует 16-элементной кольцевой АР, внутренний радиус  м.

Рисунок 7 – 4-элементная дуговая антенная решетка

Диаграммы направленности антенной решетки в горизонтальной плоскости, , приведены на рисунках 8-10.

Рисунок 8 – Диаграммы направленности на частоте 3 МГц

Рисунок 9 – Диаграммы направленности на частоте 9,5 МГц

В качестве питающего фидера используем двухпроводную линию передачи. Двухпроводная линия передачи представляет собой два провода, между которыми расположены изоляторы (рис.10). Сопротивление двухпроводной линии лежит в пределах 200-600-Ом и определяется как

Zл = 276 log10 (D/d),

где D – расстояние между центрами проводников,

d – диаметр проводников.

Электромагнитное поле сосредоточено как внутри, так и за линией (рис.11).

Это обуславливает влияние на линию различных близлежащих предметов на расстоянии до 10D. Происходит увеличение излучения линии на высоких частотах из-за рассимметрирования антенны. При рассимметрировании, токи, протекающие в разных проводах линии находятся не в фазе, и не компенсируют друг друга, что приводит к излучению фидера. При использовании двухпроводных линий, провода которых проходят в диэлектрике, будем иметь больше потери в нем на ВЧ. Двухпроводная линия переносит режим работы с КСВ значительно легче. Действительно, она обычно выполнена из достаточно толстого провода, способного пропустить значительные токи, и большое расстояние между проводами защищает линию от пробоя.

Рисунок 10 – Двухпроводная линия передачи

Рисунок 11 – Электромагнитное поле двухпроводная линии передачи