Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Куликов глава 10.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
1.21 Mб
Скачать

10.8. Пуск двигателей

Пуск двигателя - это процесс перехода двигателя и рабочих механизмов из неподвижного состояния ( = 0) в состояние вра­щения с нормальной скоростью ( = 0).

Процессы, протекающие при пуске синхронных и асинхронных двигателей, а также их схемы пуска очень похожи и отличаются лишь тем, что у синхронного двигателя на последней стадии пуска включается возбуждение. Пуск двигателей является нормальным переходным режимом который рассматривается с точки зрения обеспечения нормальной работы системы электроснабжения. При этом решаются такие задачи, как определение тока двигателей, на­пряжения на их зажимах при пуске, возможность группового пуска двигателей и т.п.

Во время пуска двигатель потребляет значительно большее ко­личество энергии, чем в нормальном режиме, что сопровождается увеличением пускового тока. Кратность пускового тока по отно­шению к номинальному достигает 5...8 для двигателей с короткозамкнутым ротором.

Условия пуска двигателей определяются механическим момен­том, который должен быть создан двигателем в начальный момент пуска.

Механические характеристики некоторых типов приводимых во вращение механизмов даны на рис. 10.13. Выделяют легкие, нормальные и тяжелые условия пуска.

Легкие условия возникают, когда начальный момент враще­ния двигателя Ммехнач = (10 ... 40)% Мном, где Мном - номинальный момент двигателя.

Рис. 10.13. Механические характеристики рабочих ме­ханизмов: 1 - подъемный кран; 2 - центробежные насосы; 3 - поршневые компрессы и вентиляторы

Нормальные условия возникают при Ммехнач = (50...75) % Мном.

Тяжелые условия пуска - это такие условия, при которых

Ммех.нач = 100 % и более МНОМ.

Т яжелые условия пуска характерны для таких механизмов, как подъемные краны (рис. 10.13), дробильные барабаны, насосы с от­крытой задвижкой и т.п. Для облегчения тяжелых условий пуска в некоторых приводах применяются специальные механизмы: цен­тробежные, гидравлические, сцепные и другие муфты, с помощью которых двигатель нагружается лишь после того, как достигнет нужной скорости вращения и станет развивать соответствующий этой скорости механический момент.

Схемы пуска определяются жесткостью питающей сети. Рассмотрим схемы прямого и реакторного пусков как наибо­лее распространенные в практи­ке эксплуатации.

Рис. 10.14. Схемы пуска двигателей: а - прямого; б - реакторного

Прямой пуск произво­дится по схеме, показанной на рис. 10.14, а. Двигатель включа­ется на полное напряжение сети выключателем. Это наиболее простая схема, применяемая для пуска двигателей малой мощности.

Реакторный пуск производится по схеме, показанной на рис. 10.14, б. В начале пуска шунтирующий выключатель В2 от­ключен. Двигатель подключается к сети через реактор, который ограничивает пусковой ток двигателя, снижая напряжение на его зажимах. По мере разгона двигателя потребляемый им ток снижа­ется, и при приближении скорости вращения двигателя к номи­нальной включается шунтирующий выключатель В2, выклю­чающий пусковой реактор. Сопротивление реактора определяется следующим образом:

(10.17)

где Iпуск, min - величина, до которой ограничивается пусковой ток с помощью реактора; Iпуск Mах - пусковой ток двигателя при номи­нальном напряжении на его зажимах.

Напряжение на зажимах двигателя при реакторном пуске опре­делится из схемы замещения, показанной на рис. 10.15:

(10.18)

Пусковой ток при этом

. (10.19)

Момент при реакторном пуске определится, как

(10.20)

Рис. 10.15. Схема замещения при ре­акторном пуске

В выражениях (10.17) - (10.20) предполага­ется, что двигатель в режиме пуска может быть представлен только реактивным сопротивлени­ем. Это не вносит в расчет существенной по­грешности, так как активное сопротивление двигателя, обратно пропорциональное скольжению, в первый момент пуска (при S = 100 %) незначительно. Не­достатком реакторного пуска является необходимость в дополни­тельном оборудовании (реакторе и выключателе). Кроме того, увеличивается время пуска двигателя, снижается его пусковой электромагнитный момент. Достоинство реакторного пуска улучшение режима напряжений в питающей сети, смягченные тре­бования к ее оборудованию.

Пуск синхронных двигателей имеет свои особенности. Син­хронный двигатель подключается к сети невозбужденным. Его об­мотка возбуждения короткозамкнута или закорачивается на сопротивление rпуск = (5... 10) rf, где rf, - сопротивление обмотки возбуждения. Пусковой ток двигателя определится как

где Uм - напряжение на зажимах двигателя; x"d - сверхпереходное сопротивление двигателя. Как только скорость вращения ротора станет близкой к синхронной, ему подается возбуждение и он втягивается в синхронизм.

Расчет режима пуска производится с целью определения вре­мени пуска, допустимости нагрева обмоток, характера изменения напряжений в питающей сети. Как для асинхронных, так и для синхронных двигателей расчет режима пуска производится реше­нием уравнений движения ротора двигателя. Начальное значение скольжения при этом равно единице (Sпуск =100 %). Разбивая ин­тервал времени пуска на малые интервалы, находят зависимость

S(t), по которой определяют время пуска (при S = So). Зная время существования токовых перегрузок и их величины, вычисляют на­грев двигателя. Зависимость U(t) (необходимая, например, для оценки устойчивости работающих рядом двигателей) определится, если на каждом интервале времени рассчитывать режим напряже­ния в питающей сети и на зажимах двигателя.

Пример 10.2. От шин 6 кВ понижающей подстанции питаются два одина­ковых асинхронных двигателя Ml и М2, каждый из которых имеет параметры:

Рном = 2000 кВт, UHOM = 6 кВ, cos = 0.83, = 92 %, Iпуск = 5.2.

Остальные элементы схемы характеризуются следующими данными: Трансформатор Т-1: SHOM = 15 MBA, 115.5/37 кВ, UK = 10.5 %.

Трансформатор Т-2: SHOM = 7.5 MBA, 36.8/6.6 кВ, UK = 7.5 %.

Линия L: l= 15 км, x0 = 0.4 Ом/км.

Система S - источник бесконечной мощности с неизменным напряжени­ем 107кВ.

Требуется сравнить условия пуска двигателей для случаев, когда:

а) оба двигателя пускаются одновременно;

б) пускается один двигатель, в то время как другой работает при номиналь­ ном напряжении с нагрузкой 0.67Sном при cos  = 0.8.

Сравнение провести по значениям периодических слагающих пускового тока и пускового момента, имея в виду, что пусковой момент при номинальном напря­жении составляет 70 % номинального момента двигателя.

Решение. Примем Sб = 7.5 МВА и Uб1 = 6 кВ. Тогда базисные напряжения на других ступенях определим как

кВ и

Относительные реактивности элементов схемы замещения, приведенной на рис. 2.21, б, при этом вычислим так:

где номинальная мощность двигателя

Напряжение системы в относительных единицах

Случай а. В схеме замещения следует считать Е1 = Е2 = 0.

Результирующая реактивность схемы составляет

Пусковой ток в каждом двигателе при базисных условиях

или по отношению к номинальному току двигателя

Остаточное напряжение на выводах двигателя при его пуске U = 1.1*0.55 = 0.605, соответственно момент двигателя при пуске Mпуск = 0.6052  0.7MНОМ = 0.256MНОМ.

Случай в. Найдем вначале ЭДС двигателя, который работал под нагрузкой. Его рабочий ток при базисных условиях составляет

Следовательно, искомая ЭДС будет равна

Суммарная реактивность со стороны системы до шин 6 кВ

xC=0.064 + 0.04 + 0.091 = 0.195.

Эквивалентная реактивность схемы до двигателя М2, пуск которого рассмат­ривается в данном случае (соответственно Е2 = 0), составляет xM = 0.195//0.55 =0.144. Эквивалентная ЭДС, приложенная за этой реактивностью, вычисляется , так:

Таким образом, пусковой ток двигателя при базисных условиях

при номинальных условиях

Остаточное напряжение UOCT =1.44*0.55 = 0.79 и развиваемый двигателем момент при пуске Мпуск = 0.792 * 0.7МН = 0.44МН.

Как видно, по сравнению с условиями, рассмотренными для случая «а», здесь пусковой ток больше в 0.44 / 0.256 = 1.72 раза.