Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Куликов глава 10.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
1.21 Mб
Скачать

10.7.2. Динамическая устойчивость синхронного двигателя

Предположим, что двигатель снабжен АРВ пропорционального типа. Тогда он может быть, как и в предыдущих случаях (см. п. 9.11.2), представлен сопротивлением x'd и ЭДС Е'. Характери­стика мощности двигателя без учета второй гармоники имеет си­нусоидальный характер (кривая 1 на рис. 10.11). При уменьшении напряжения на зажимах двигателя рабочая точка перемещается на характеристику мощности, соответствующую новому режиму (точка b на характеристике 2, рис. 10.11, а). При этом на валу дви­гатель - приводимый механизм возникает тормозной, избыточный момент Мторм, угол  начинает увеличиваться, а тормозной момент уменьшается и становится равным нулю в точке с. Кинетиче­ская энергия, запасенная ротором двигателя при его движении от точки b к точке с (величина ее пропорциональна площади abc), не позволит ротору остановиться в точке нового устойчивого равно­весия с. Угол  будет увеличиваться до тех пор, пока площадь cde не станет равной площади abc. Точка d соответствует максималь­ному углу отклонения оси ротора от своего первоначального положения (0).

Рис. 10.11. К анализу динамической устойчивости синхронного двигателя: а - снижение напряжения (характеристики момента UHOM (кривая /) и мощно­сти при пониженных напряжениях (кривые 2, 3)); - наброс механического момента

В точке d скорость вращения ротора становится равной син­хронной, но, поскольку на вал двигателя действует избыточный ускоряющий момент Муск, ротор начинает двигаться в сторону точки с. Около нее возникают затухающие колебания, аналогичные таковым при внезапном отключении линии (см. рис. 10.1, г).

Рассмотренное снижение напряжения (ему соответствует ха­рактеристика 2) не нарушает устойчивости двигателя, и он может нормально работать при пониженном напряжении (с меньшим запасом статической устойчивости). Если характеристика мощно­сти располагается так, что максимальный угол отклонения ротора превышает критическое значение кр3 (характеристика 3), на валу двигателя возникает тормозной, избыточный момент и его устой­чивость нарушается. В этом случае для сохранения устойчивости необходимо восстановление напряжения Uо на зажимах двигателя в какой-либо момент времени, соответствующий углу ВОССТ.

При этом происходит переход рабочей точки на характеристи­ку 1, новая площадь ускорения mgh будет достаточной для пре­кращения торможения двигателя и возвращения его в устойчивое рабочее состояние. Предельное значение угла ВОССТ, при котором восстановление прежнего значения напряжения обеспечит сохра­нение динамической устойчивости, определится из равенства пло­щадей Fabc' + Fnmf = Fc'd'n + Fmgh , или

откуда после преобразований, аналогичных приведенным в разд. 10.3, получаем

При набросе механического момента двигателя до значения P/0 (рис. 10.11, б) на валу возникает тормозной избыточный момент Мторм, вызывающий относительное движение ротора в сторону увеличения угла . После того как угол ротора превысит значение 1 на валу двигателя появляется ускоряющий избыточный момент. Относительная скорость ротора, максимальная в точке с, становит­ся равной нулю в точке d. Двигатель начинает движение в обрат­ную сторону. В результате затухающих колебаний около точки с двигатель переходит в новый режим работы с углом 1.

При большем набросе механического момента (до величины p0") динамическая устойчивость в отличие от предыдущего случая не сохранится. При любом значении угла  избыточный момент будет иметь тормозной характер и двигатель выпадет из синхро­низма. В этом случае сохранение устойчивости возможно, если произойдет восстановление механического момента до его преж­него значения в какой-то точке f. На валу двигателя возникает ус­коряющий избыточный момент, пропорциональный отрезку fg. Устойчивость двигателя сохранится, если площадь торможения amkf будет меньше или, по крайней мере, равна предельно воз­можной площади ускорения fgh. В случае равенства этих площадей угол восстановления механического момента является предельным. Его значение может быть найдено из равенства

Famkf - Ffgh = 0 ИЛИ

Раскрыв интегралы и преобразовав полученное выражение, за­пишем

Время, в течение которого ротор двигателя достигнет угла Восст.пр, определяется из зависимости  = f(t), которая в свою оче­редь получается в результате решения уравнения движения ротора. При возникновении на валу двигателя избыточного момента его относительная скорость  будет определяться формулой d / dt =  = 0 - , где  - синхронная скорость.

Относительное значение * найдем по формуле

Скольжение двигателя представим в виде

Ускорение ротора, соответствующее избыточному моменту M, прямо пропорционально M и обратно пропорционально по­стоянной инерции двигателя Тj.

откуда

(10.16)

Это уравнение называется уравнением движения ро­тора синхронного двигателя. Правая часть этого уравнения нелинейна, поэтому решение может быть получено с помощью какого-либо численного метода (в частности, метода последовательных интервалов). Результа­том решения является зависимость =f(t) (рис. 10.12). Определив графическим ме­тодом предельный угол восстановления восст..пр, находим соответствующее ему предельное время t восст.пр так, как это пока­зано на рис. 10.12.

Рис. 10.12. К определе­нию t восст.пр

Решение уравнения движения ротора двигателя (10.16) позволяет судить об устойчивости двигателя. Если зависимость (t) име­ет нарастающий характер, то двигатель неустойчив. Если эта зави­симость отражает затухающие колебания, то двигатель устойчив.