
- •Второе издание удостоено государственной прем!* ссср
- •Кристалла — дислокация
- •В чет состоят основные представления о строении вещества?
- •Классификация материалов £ помощью зонной теории твердого тела и по магнитным свойствам.
- •3. Основные виды поляризации диэлектриков
- •4. Классификация диэлектриков по виду поляризации
- •5. Диэлектрическая проницаемость газов
- •Показатель преломления и диэлектрическая проницаемость некоторых газов
- •3). Число молекул n пропорционально давлению и обратно пропорционально абсолютной температуре.
- •6. Диэлектрическая проницаемость жидких диэлектриков
- •Диэлектрическая проницаемость и ее температурный коэффициент для неполярных и слабополярных жидкостей
- •Жидкости — совола
- •7. Диэлектрическая проницаемость твердых диэлектриков
- •Диэлектрическая проницаемость и показатель преломления некоторых неполярных твердых диэлектриков при температуре 20 “с
- •Значение ег и тк ег ионных кристаллов при температуре 20 °с
- •Различных частотах Значение ег неорганических стекол и органических полярных диэлектриков при 20 °с
- •Сегнетова соль 500—600 Титанат бария 1500—2000 Титанат бария с добавками . . 7000—9000
- •Электропроводность диэлектриков
- •2. Электропроводность газов
- •3 . Электропроводность жидкостей
- •4. Электропроводность твердых тел
- •Натриевый пирекс .... 2-10е Калиевый пирекс 8109 Свинцовое стекло 2-1010
- •5. Поверхностная электропроводность твердых диэлектриков
- •Удельное поверхностное сопротивление некоторых материалов при относительной влажности, равной 70 %
- •Основные механизмы электропроводности газов, диэлектрических жидкостей и твердых диэлектриков.
- •Чем обусловливается поверхностная электропроводность твердых диэлектриков?
- •1. Основные понятия
- •2. Виды диэлектрических потерь в электроизоляционных материалах
- •3. Диэлектрические потери в газах
- •4. Диэлектрические потери в жидких диэлектриках
- •Жидкости
- •5. Диэлектрические потери в твердых диэлектриках
- •Частотах
- •Температуре 50 °с)
- •Температуры
- •2. Пробой газов
- •4. Пробой твердых диэлектриков
- •Электрический пробой макроскопически однородных диэлектриков.
- •Электрическая прочность некоторых твердых диэлектриков в однородном поле при частоте 50 Гц
- •5. Тепловой и электрохимический пробой твердых диэлектриков
- •В чем различие в терминах: пробивное напряжение и электрическая прочность материала?
- •Каковы механизмы пробоя газоп, жидкостей и твердых тел?
- •Выведите выражение для пробивного напряжения при тепловом пробое по упрощенной теории н. II. Семенова и в. А. Фока.
- •"‘Нас Риас
- •Чиваемой поверхности (б)
- •Воздуха и температуры
- •Церезин 1,5-10'19 Полистирол 6,2-10"1?1- Триацетат целлюлозы . . . 2,ь10-в
- •Температурные коэффициенты линейного расширения некоторых диэлектриков
- •4. Химические свойства диэлектриков и воздействие на материалы излучений высокой энергии
- •Какие физико-химические и механические свойства диэлектриков необходимо учитывать при эксплуатации материалов?
- •Какие из этих свойств являются специфическими для диэлектриков?
- •К чему сводится влияние на диэлектрики излучений высокой энергии?
- •5. Общие сведения об органических полимерах
- •— Кремнийорганический; 6 — полиимидный
- •Р /v5 ис. 6-17. Схема установки для пропитки с применением вакуума и давления
- •Различных частотах
- •Мв/м при переменном напряжении частоты 50 Гц.
- •75 МПа, удельная ударная вязкость 20—
- •Изоляции на провод
- •Корпус; 8 — подвод воды для охлаждения червяка; 9 — слив воды
- •Из полиэтилена
- •Свойства гетииакса марок I и V, текстолита марки б и стеклотекстолита марки стэф (образцы толщиной более 10 мм)
- •6Текловолокно
- •18. Слюда и слюдяные материалы
- •(В % по массе)
- •Диаметра провода о
- •Охлаждении
- •Параметры некоторых сверхпроводкнксвых материалов
- •Изменение удельного сопротивления алюминия различной чистоты
- •5. Различные сплавы, припои, неметаллические проводники
- •Растворять и удалять оксиды и загрязнения с поверхности спаиваемых металлов;
- •Защищать в процессе пайки поверхность металла, а также расплавленный припой от окисления; 3) уменьшать поверхностное натяжение расплавленного припоя и смачиваемость им соединяемых поверхностей.
- •2. Электропроводность полупроводников
- •I I I I I I лической решетки германия: а — без примесей;
- •Р Тх Тип р Тг Тх Тип п % б) ис. 8-3. Определение типа электропроводности полупроводников: а — при помощи эффекта Холла; б — при помощи нагрева одного из концов испытуемого полупроводника
- •4. Элементы, обладающие свойствами полупроводников
- •От температуры
- •С воздушным охлаждением
- •От температуры
- •5. Полупроводниковые химические соединения и материалы на их основе
- •Свойства полупроводниковых соединений типа ашву
- •В кристалле
- •С магнитным сердечником
- •Точки компенсации (б)
- •Плотность и удельное сопротивление электротехнической стали в зависимости от содержания кремния
- •Предельное значение удельных потерь и магнитной •индукции электротехнической стали класса 2
- •Предельное значение удельных потерь и магнитной индукции электротехнической стали класса 3
- •Свойства железоникелевых сплавов (пермаллоев) после термической обработки
- •Проницаемостью
- •Состав и свойства мартенситных сталей для постоянных магнитов
- •Магнитные свойства магнитов из феррита бария н феррита кобальта
2. Электропроводность полупроводников
СОБСТВЕННЫЕ ПОЛУПРОВОДНИКИ
ч Собственный полупрпиолник — ролупроволник-, не содержащий примесей, влияющих на его электропроводность. Общие представления зонной теории твердого тела, приведенные во введении, указывают, что для полупроводников характерно наличие не очень широкой запрещенной зоны в энергетической диаграмме (см. рис. В-8). Ширина запрещенной зоны полупроводниковых элементов приведена в табл. 8-2. Для наиболее широко используемых полупроводников она составляет (0,8—4,0)-10"19Дж (0,5—2,5 эВ). На рис. 8-1,априве- дена энергетическая диаграмма собственного полупроводника, т. е.
Рис. 8-1. Влияние примесей на энергетическую диаграм- му полупроводников: а — собственный полупроводник; б — полупроводник с донор- ной примесью, электропро- водность электронная («-ти- па); в — полупроводник с акцепторной примесью, элек- тропроводность дырочная (р-типа)
такого, у которого элек- троны в зону свободных энергетических уров-
ней (зону проводимости) могут поставляться только из за- полненной электронами зоны (валентной зоны). Распределение электронов по уровням энергии, изображенное на рис. 8-1, а, соот- ветствует некоторой температуре Т, при которой в зону проводимости перешло несколько электронов, образовав в валентной зоне соответ- ствующее число дырок. Так как при каждом акте возбуждения в собственном полупроводнике одновременно создаются два заряда противоположных знаков, то общее число носителей заряда будет в два раза больше числа электронов в зоне проводимости, т. е.
поi — Рой поi "Ь Pai = 2«0г* (8-1)
Индекс i (от слова intrinsic — присущий, внутренний) у кон- центрации электронов и концентрации дырок означает, что это собственные носители зарядов. В рассматриваемом случае удельная проводимость
y = enoiun +epoiup. (8-2)
В результате процессов возбуждения и рекомбинации при любой температуре тела устанавливается равновесная концентрация воз- бужденных носителей:
электронов
= 2jV0exp (
(8-3)
а)
дырок
Pot = 2NB exp ■ ш
где W — ширина запрещенной зоны полупроводника; Nc — число энергетических уровней в единице объема полупроводника в свободной зоне (зоне проводимости); Ыъ — то же, в валентной зоне. Коэффициент, равный двум, показывает, что на каждом уровне могут находиться два электрона.
Подвижности электронов ип и дырок ир в выражении (8-2) неодинаковы. Электроны и дырки обладают различной инерционностью при движении в поле кристаллической решетки полупроводника, т. е. отличаются друг от друга эффективными массами rtin и trip. В большинстве случаев Шп <3 rtip. Отсюда собственная электропроводность полупроводников имеет слабо преобладающий электронный характер.
W
б)
■■ |
|
—*~t— |
1 г £ |
|
|
|
|
%
I
w
2kT
)•
(8-4)
Общие представления. Для большинства полупроводниковых приборов используются примесные полупроводники. Поэтому в практике важное значение имеют такие полупроводниковые материалы,
которых ощутимая концентрация собственных носителей заряда появляется при возможно более высокой температуре, т. е. полу- Тфгшппнйки г гтогтятоцно широкой запрещённой зоной. В рабочем интервале температур поставщиками свободных носителей заряда I являются примеси. Примесями в простых полупроводниках служат ' чужеродные атомы. Под примесями в полупроводниковых химических соединениях понимают не только включения атомов посторонних элементов, но и избыточные по стехиометрическому составу атомы тех самых элементов, которые входят в химическую формулу самого соединения. Кроме того, роль примесей играют всевозможные дефекты кристаллической решетки: пустые узлы, атомы или ионы, оказавшиеся в междоузлиях решетки, дислокации или сдвиги, возникающие при пластической деформации кристалла, микротрещины и т. д. (стр. 12). Если примесные атомы находятся в узлах кристаллической решетки, то они называются примесями замещения, если в междоузлиях — примесями внедрения.
Доноры и акцепторы. Рассмотрим роль тех примесей, атомы которых создают дискретные энергетические уровни в пределах запрещенной зоны полупроводника. При небольшой концентрации примесей их атомы расположены в решетке полупроводника на таких больших расстояниях друг от друга, что они не взаимодействуют, а потому энергетические уровни их почти такие же, как в отдельном свободном атоме. Вероятность непосредственного перехода электронов с одного примесного атома на другой ничтожно мала. Однако примеси могут либо поставлять электроны в зону проводимости полупроводника, либо принимать их с уровней его валентной зоны.
Доноры. Заполненные при отсутствии внешних энергетических воздействий (теплота, свет) примесные уровни расположены в запрещенной зоне около «дна» зоны проводимости (рис. 8-1, б). При этом энергия активации примесных атомов меньше, чем ширина запрещенной зоны основного полупроводника, а потому при нагреве тела переброс электронов примеси будет опережать возбуждение электронов решетки. Положительные заряды, возникшие у отдаленных друг от друга примесных атомов (на рис. 8-1,6 уровни примеси показаны с разрывами), остаются локализованными, т. е. не могут блуждать по кристаллу и участвовать в электропроводности. Полупроводник с такой примесью имеет концентрацию электронов, большую, чем концентрация дырок, появившихся за счет перехода электронов из валентной зоны в зону проводимости, и его называют полупроводником п-типа, а примеси, поставляющие электроны в зону проводимости, — донорами.
Акцепторы. Другие примеси могут внести незаполненные Уровни, располагающиеся в запрещенной зоне основного полупроводника вблизи «потолка» валентной зоны. Тепловое возбуждение
а) ||||| Рис- 8-2. Схематическое изображение кристал-