- •Второе издание удостоено государственной прем!* ссср
- •Кристалла — дислокация
- •В чет состоят основные представления о строении вещества?
- •Классификация материалов £ помощью зонной теории твердого тела и по магнитным свойствам.
- •3. Основные виды поляризации диэлектриков
- •4. Классификация диэлектриков по виду поляризации
- •5. Диэлектрическая проницаемость газов
- •Показатель преломления и диэлектрическая проницаемость некоторых газов
- •3). Число молекул n пропорционально давлению и обратно пропорционально абсолютной температуре.
- •6. Диэлектрическая проницаемость жидких диэлектриков
- •Диэлектрическая проницаемость и ее температурный коэффициент для неполярных и слабополярных жидкостей
- •Жидкости — совола
- •7. Диэлектрическая проницаемость твердых диэлектриков
- •Диэлектрическая проницаемость и показатель преломления некоторых неполярных твердых диэлектриков при температуре 20 “с
- •Значение ег и тк ег ионных кристаллов при температуре 20 °с
- •Различных частотах Значение ег неорганических стекол и органических полярных диэлектриков при 20 °с
- •Сегнетова соль 500—600 Титанат бария 1500—2000 Титанат бария с добавками . . 7000—9000
- •Электропроводность диэлектриков
- •2. Электропроводность газов
- •3 . Электропроводность жидкостей
- •4. Электропроводность твердых тел
- •Натриевый пирекс .... 2-10е Калиевый пирекс 8109 Свинцовое стекло 2-1010
- •5. Поверхностная электропроводность твердых диэлектриков
- •Удельное поверхностное сопротивление некоторых материалов при относительной влажности, равной 70 %
- •Основные механизмы электропроводности газов, диэлектрических жидкостей и твердых диэлектриков.
- •Чем обусловливается поверхностная электропроводность твердых диэлектриков?
- •1. Основные понятия
- •2. Виды диэлектрических потерь в электроизоляционных материалах
- •3. Диэлектрические потери в газах
- •4. Диэлектрические потери в жидких диэлектриках
- •Жидкости
- •5. Диэлектрические потери в твердых диэлектриках
- •Частотах
- •Температуре 50 °с)
- •Температуры
- •2. Пробой газов
- •4. Пробой твердых диэлектриков
- •Электрический пробой макроскопически однородных диэлектриков.
- •Электрическая прочность некоторых твердых диэлектриков в однородном поле при частоте 50 Гц
- •5. Тепловой и электрохимический пробой твердых диэлектриков
- •В чем различие в терминах: пробивное напряжение и электрическая прочность материала?
- •Каковы механизмы пробоя газоп, жидкостей и твердых тел?
- •Выведите выражение для пробивного напряжения при тепловом пробое по упрощенной теории н. II. Семенова и в. А. Фока.
- •"‘Нас Риас
- •Чиваемой поверхности (б)
- •Воздуха и температуры
- •Церезин 1,5-10'19 Полистирол 6,2-10"1?1- Триацетат целлюлозы . . . 2,ь10-в
- •Температурные коэффициенты линейного расширения некоторых диэлектриков
- •4. Химические свойства диэлектриков и воздействие на материалы излучений высокой энергии
- •Какие физико-химические и механические свойства диэлектриков необходимо учитывать при эксплуатации материалов?
- •Какие из этих свойств являются специфическими для диэлектриков?
- •К чему сводится влияние на диэлектрики излучений высокой энергии?
- •5. Общие сведения об органических полимерах
- •— Кремнийорганический; 6 — полиимидный
- •Р /v5 ис. 6-17. Схема установки для пропитки с применением вакуума и давления
- •Различных частотах
- •Мв/м при переменном напряжении частоты 50 Гц.
- •75 МПа, удельная ударная вязкость 20—
- •Изоляции на провод
- •Корпус; 8 — подвод воды для охлаждения червяка; 9 — слив воды
- •Из полиэтилена
- •Свойства гетииакса марок I и V, текстолита марки б и стеклотекстолита марки стэф (образцы толщиной более 10 мм)
- •6Текловолокно
- •18. Слюда и слюдяные материалы
- •(В % по массе)
- •Диаметра провода о
- •Охлаждении
- •Параметры некоторых сверхпроводкнксвых материалов
- •Изменение удельного сопротивления алюминия различной чистоты
- •5. Различные сплавы, припои, неметаллические проводники
- •Растворять и удалять оксиды и загрязнения с поверхности спаиваемых металлов;
- •Защищать в процессе пайки поверхность металла, а также расплавленный припой от окисления; 3) уменьшать поверхностное натяжение расплавленного припоя и смачиваемость им соединяемых поверхностей.
- •2. Электропроводность полупроводников
- •I I I I I I лической решетки германия: а — без примесей;
- •Р Тх Тип р Тг Тх Тип п % б) ис. 8-3. Определение типа электропроводности полупроводников: а — при помощи эффекта Холла; б — при помощи нагрева одного из концов испытуемого полупроводника
- •4. Элементы, обладающие свойствами полупроводников
- •От температуры
- •С воздушным охлаждением
- •От температуры
- •5. Полупроводниковые химические соединения и материалы на их основе
- •Свойства полупроводниковых соединений типа ашву
- •В кристалле
- •С магнитным сердечником
- •Точки компенсации (б)
- •Плотность и удельное сопротивление электротехнической стали в зависимости от содержания кремния
- •Предельное значение удельных потерь и магнитной •индукции электротехнической стали класса 2
- •Предельное значение удельных потерь и магнитной индукции электротехнической стали класса 3
- •Свойства железоникелевых сплавов (пермаллоев) после термической обработки
- •Проницаемостью
- •Состав и свойства мартенситных сталей для постоянных магнитов
- •Магнитные свойства магнитов из феррита бария н феррита кобальта
Мв/м при переменном напряжении частоты 50 Гц.
В качестве диэлектрика силовых электрических конденсаторов наряду с конденсаторной бумагой все шире применяют синтетические пленки (§6-11); весьма перспективна для этой цели неполярная полипропиленовая пленка, имеющая малый ^ б при довольно высокой нагревосюйкости. Выпускаются и бумажно-пленочные конденсаторы, диэлектрик которых состоит из двух слоев — бумаги и пленки; при этом бумага играет роль фитиля, по которому в процессе пропитки проникает в глубь конденсатора пропиточная масса (пропитка чисто пленочных конденсаторов затруднена).
Микалеитная бумага, применяемая в качестве подложки микаленты (§ 6-17), — одна нз немногих разновидностей электроизоляционных бумаг, производимых не из древесной целлюлозы щелочной варки, а из длинноволокнистого хлопка. Она имеет толщину 20 ± 2 мкм и массу 1 м2, равную 17 г; выпускается в рулонах шириной 450 или 900 мм.
Картон в основном отличается от бумаги большей толщиной. Электроизоляционные картоны изготовляются двух типов; воздушные более твердые и упругие, предназначенные для работы на воздухе (прокладки для пазов электрических машин, каркасы катушек, шайбы), и масляные — более рыхлой структуры и более мягкие, предназначаемые в основном для работы в трансформаторном масле (например, в изоляции маслонаполненных трансформаторов). Масляные картоны хорошо пропитываются маслом и в пропитанном виде имеют высокую электрическую прочность. В рулонах выпускаются только наиболее тонкие электроизоляционные картоны. Обычно же картоны (употребительные толщины — до 3 мм, в отдельных случаях выше) выпускаются в листах. Электроизоляционные картоны изготовляются из древесной или хлопковой целлюлозы.
Особая бумага и картон. Помимо описанных выше материалов типа бумаг и картонов, изготовляемых из целлюлозы, для электрической изоляции с успехом применяются бумаги из целлюлозы с добавками других волокнистых материалов и даже бумаги, совсем не содержащие целлюлозы. Так, бумаги из смеси целлюлозы с полиэтиленовым волокном имеют вг, б и гигроскопичность меньшие, а механическую прочность большую, чем чисто целлюлозные бумаги. Такие бумаги, в частности, находят применение в изоляции кабелей весьма высокого напряжения.
Как уже отмечалось (стр. 125), эфиры целлюлозы имеют меньшие ег, 1д б и гигроскопичность по сравнению с целлюлозой. Помимо полного превращения целлюлозы в ее эфиры и изготовления из них волокна, возможна ее химическая обработка, превращающая поверхностный слой волокна в эфир, но не изменяющая остальной части волокна. Так, ацетилированная бумага из целлюлозы, частично превращенной в ацетилцеллюлозу, имеет лучшие электроизоляционные свойства и меньшую гигроскопичность (рис. 6-24), а также несколько более высокую нагрево- стойкость по сравнению с целлюлозной бумагой. Еще выше (на 10—25 °С) нагрево- стойкость бумаги, обработанной раствором цианамида СМ2Н2.
ФИБРА
Она изготовляется из тонкой бумаги, которая пропускается через теплый раствор хлористого цинка 2пС1.г и затем наматывается на стальной барабан до получения слоя нужной толщины, причем отдельные слои бумаги прилипают друг к другу; затем фибра срезается с барабана, тщательно промывается водой и прессуется. Промывка фибры необходима для того, чтобы удалить остатки хлористого цинка, легко диссоциирующего на ионы и ухудшающего электроизоляционные свойства фибры. Листовая электротехническея фибра (марка ФЭ) по ГОСТ 14613—69 выпускается толщиной от 0,6 до 3 мм (конструкционные сорта фибры изготовляются толщиной до 35 мм). Цвет фибры может быть черным, серым, красным и опреде-
Рис. 6-25. Зависимости ег (а) и б (б) бумаги номекс от температуры при различных частотах
л
Ь / |
, Л л ^£^2 |
|
|
|
|
|
|
|
I |
|
£ |
0 50 100 150 200 °С
¥
30 25 20
яется окраской бумаги, взятой для ее изготовления. Фибра имеет невысокие электроизоляционные свойства и значительную гигроскопичность; однако ее механическая прочность значительна (предел прочности при растяжении вдоль листа не менее 70—